首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparisons of the genetic maps of Escherichia coli K-12 and Salmonella typhimurium LT2 suggest that the size and organization of bacterial chromosomes are highly conserved. Employing pulsed-field gel electrophoresis, we have estimated the extent of variation in genome size among 14 natural isolates of E. coli. The BlnI and NotI restriction fragment patterns were highly variable among isolates, and genome sizes ranged from 4,660 to 5,300 kb, which is several hundred kilobases larger than the variation detected between enteric species. Genome size differences increase with the evolutionary genetic distance between lineages of E. coli, and there are differences in genome size among the major subgroups of E. coli. In general, the genomes of natural isolates are larger than those of laboratory strains, largely because of the fact that laboratory strains were derived from the subgroup of E. coli with the smallest genomes.  相似文献   

2.
Evolutionary dynamics of full genome content in Escherichia coli   总被引:7,自引:0,他引:7       下载免费PDF全文
Ochman H  Jones IB 《The EMBO journal》2000,19(24):6637-6643
The evolutionary history of the entire Escherichia coli chromosome was traced by examining the distribution of the approximately 4300 open reading frames (ORFs) from E.coli MG1655 among strains of known genealogical relationships. Using this framework to deduce the incidence of gene transfer and gene loss, a total of 67 events-37 additions and 30 deletions-were required to account for the distribution of all genes now present in the MG1655 chromosome. Nearly 90% of the ORFs were common to all strains examined, but, given the variation in gene content and chromosome size, strains can contain well over a megabase of unique DNA, conferring traits that distinguish them from other members of the species. Moreover, strains vary widely in their frequencies of deletions, which probably accounts for the variation in genome size within the species.  相似文献   

3.
The fungus Ascochyta rabiei is the causal agent of Ascochyta blight of chickpea and the most serious threat to chickpea production. Little is currently known about the genome size or organization of A. rabiei. Given recent genome sequencing efforts, characterization of the genome at a population scale will provide a framework for genome interpretation and direction of future resequencing efforts. Electrophoretic karyotype profiles of 112 isolates from 21 countries revealed 12–16 chromosomes between 0.9 Mb and 4.6 Mb with an estimated genome size of 23 Mb–34 Mb. Three general karyotype profiles A, B, and C were defined by the arrangement of the largest chromosomes. Approximately one-third of isolates (group A) possessed a chromosome larger than 4.0 Mb that was absent from group B and C isolates. The ribosomal RNA gene (rDNA) cluster was assigned to the largest chromosome in all except four isolates (group C) whose rDNA cluster was located on the second largest chromosome (3.2 Mb). Analysis of progeny from an in vitro sexual cross between two group B isolates revealed one of 16 progeny with an rDNA-encoding chromosome larger than 4.0 Mb similar to group A isolates, even though a chromosome of this size was not present in either parent. No expansion of the rDNA cluster was detected in the progeny, indicating the increase in chromosome size was not due to an expansion in number of rDNA repeats. The karyotype of A. rabiei is relatively conserved when compared with published examples of asexual ascomycetes, but labile with the potential for large scale chromosomal rearrangements during meiosis. The results of this study will allow for the targeted sequencing of specific isolates to determine the molecular mechanisms of karyotype variation within this species.  相似文献   

4.
The genomes of five nitrogen-fixing strains isolated from the vicinity of Bayreuth and named formerly Enterobacter agglomerans were studied and compared with the genomes of several Rahnella aquatilis strains as well as with one Pantoea agglomerans and one Ent. agglomerans reference strains, obtained from different world collections; they all were previously assumed to be related to this group of natural isolates.
By using the infrequently cutting restriction endonuclease XbaI , highly chracteristic fingerprints were obtained for each of the studied strains except two Ent. agglomerans isolates which had identical fingerprints. By hybridization of the resulting individual PFGE-fingerprints with a rDNA probe, containing the rrnB ribosomal RNA operon of Escherichia coli , the relationship between the analysed strains was studied. It was shown that the natural isolates are very closely related to the type strain of R. aquatilis —ATCC 33071. The genome sizes of all studied strains were estimated to be between 4.4 and 5.8 Mb on the basis of the lengths of their Xba I fragments. By a modification of the PFGE technique it was shown that the analysed strains harbour one to three large and extra large plasmids with sizes in the range 90 to 608 kb.  相似文献   

5.
 The karyotype of Flammulina velutipes (Curt. : Fr.) Sing. was investigated using contour-clamped homogeneous electric fields (CHEF) gel electrophoresis. A parental dikaryotic stock, JA, was resolved into at least eight chromosomal DNA bands ranging from 1.4- to 4.9-megabase (Mb) pairs. Overall, little size variation was found among monokaryotic strains with a few major exceptions. Among 13 monokaryotic progenies examined, 11 strains were resolved into at least eight chromosomal DNA bands in a manner similar to the parent dikaryon, whereas the other 2 were resolved into at least seven chromosomes lacking the 2.1-Mb chromosome possessed in the former. A slightly larger size variation was found in a chromosome carrying ribosomal DNA. An estimated haploid genome size of this stock was 24.0 Mb or more. Received: October 11, 2001 / Accepted: November 11, 2002 Acknowledgments We thank Professor T. Morinaga, Hiroshima Prefectural University, and Dr. T. Arima for their technical advice regarding CHEF gel electrophoresis. Correspondence to:E. Tanesaka  相似文献   

6.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

7.
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.  相似文献   

8.
The availability of multiple complete genome sequences from the same species can facilitate attempts to systematically address basic questions in genome evolution. We refer to such efforts as "microevolutionary genomics". We report the results of comparative analyses of complete intraspecific genome (and proteome) sequences from four bacterial species--Chlamydophila pneumoniae, Escherichia coli, Helicobacter pylori and Neisseria meningitidis. Comparisons of average synonymous (K(s)) and nonsynonymous (K(a)) substitution rates were used to assess the influence of various biological factors on the rate of protein evolution. For example, E. coli experiences the most intense purifying selection of the species analyzed, and this may be due to the relatively larger population size of this species. In addition, essential genes were shown to be more evolutionarily conserved than nonessential genes in E. coli and duplicated genes have higher rates of evolution than unique genes for all species studied except C. pneumoniae. Different functional categories of genes were shown to evolve at significantly different rates emphasizing the role of category-specific functional constraints in determining evolutionary rates. Finally, functionally characterized genes tend to be conserved between strains, while uncharacterized genes are over-represented among the unique, strain-specific genes. This suggests the possibility that nonessential genes are responsible for driving the evolutionary diversification between strains.  相似文献   

9.
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.  相似文献   

10.
Fungal genomes vary considerably in size and organization. The genome of Microsporidium contains less than 3 Mb while the genomes of several Basidiomycetes and Ascomycetes greatly exceed 100 Mb. Likewise chromosome numbers and ploidy levels can differ even between closely related species. The differences in genome architecture among fungi reflect the interplay of different mutational processes as well as the population biology of the different species. Comparative genome studies have elucidated the underlying mechanisms of genome evolution in different groups of fungi and have provided insight into species-specific genomic traits. Mobile genetic elements have been instrumental in shaping the genome architecture and gene content in many fungal species. In many pathogenic fungi the mobile genetic elements even play a crucial role in rapid adaptive evolution by mediating high rates of sequence mutations, chromosomal rearrangements, and ploidy changes. But in many species mobile elements are efficiently restricted by defense mechanisms, which have evolved to suppress and regulate parasitic elements. Different rates of genome dynamic and adaptive evolution may reflect varying effective population sizes through which genetic drift and natural selection have differentially affected genome architecture in fungi over time.  相似文献   

11.
A deletion that includes the bgl (beta-glucoside utilization) operon of Escherichia coli was originally detected in several rarely occurring natural isolates that utilize cellobiose. Here I show that bgl deletions are present in 95% of the Cel+ isolates obtained from diverse sources. They are also present in 29% of the Cel- strains in two different collections of natural isolates of E. coli. At least three versions of bgl deletions are present in E. coli populations. In the most common version approximately 8 kb of DNA around the bgl region of E. coli K12 is replaced by a specific 6.5-kb DNA fragment. In another version a deletion of similar length is not replaced by the same sequence. A third version involves deletion of approximately 14 kb without the replacement fragment being present. The distribution of these deletions suggests that the version 1 deletion occurred very early in the history of E coli. It also appears likely that there is selection for bgl deletions in Cel+ strains of E. coli. The presence of the version 1 deletion within distantly related phylogenetic groups of E. coli provides evidence for recombination within natural populations of E coli.   相似文献   

12.
The karyotypes of three isolates of Mycosphaerella graminicola, the septoria tritici blotch pathogen of wheat, were analyzed with both pulsed field gel electrophoresis (PFGE) and the cytological technique called germ tube burst method (GTBM). These analyses revealed a chromosome length polymorphism among these isolates. The estimated genome size was 31-40 Mb depending on the isolates, indicating 17-22% redundancy in the genome of the standard strain IP0323 because such differences do not affect development, pathogenicity and sexual reproduction of the other isolates. The chromosome numbers in the three isolates were 18-20 and the chromosome size was 0.3-6 Mb. These data show that M. graminicola has the highest chromosome number and the smallest autosomes (A chromosomes) in filamentous ascomycetes. Our data also confirmed a large (> or =6 Mb) chromosome that was assembled recently in the IPO323 genome sequence. GTBM analyses revealed the mitotic metaphase chromosomes, enabling chromosome quantification, which was fully congruent with the PFGE analyses. These data will be instrumental in the final assembly of the M. graminicola genome.  相似文献   

13.
Merlo LM  Sadowsky MJ  Ferguson JA  Dean AM 《Gene》2006,376(2):240-247
A single nucleotide polymorphism between Escherichia coli strains K12 and B is known to alter the mechanism by which the arginine repressor regulates arginine biosynthesis, from a regulated system in E. coli K12 to a deregulated system in E. coli B. Laboratory experiments have demonstrated that the different regulatory strategies are selectively favored under different environmental conditions. In this study we analyzed 537 E. coli strains and show that the argR allele in E. coli B, which causes deregulation, is rare in isolates obtained from natural sources. Moreover, sequence analysis of 85 strains shows no evidence of selection at the arginine repressor locus. This illustrates that analysis of sequence data is insufficient to detect selection of uncommon alleles in rare environments.  相似文献   

14.
Eleven strains of Escherichia coli were isolated from 54 bank voles living in the LomZa Landscape Park of the Narew River Valley, indicating that E. coli is not common in the alimentary tract of these mammals. On the basis of pulsed-field gel electrophoresis and computer-assisted analysis, the isolates were grouped into six genotypes at similarities of 39%. Chromosome length of E. coli under study differed by as much as 900 kb, ranging 2.7-3.6 Mb. All strains were susceptible to amikacin and ciprofloxacin, whereas, for tetracycline, streptomycin, ampicillin, and cefonicid, different results were noted. No differences were detected among the plasmid complements of eight strains (73%), for which plasmid profiles revealed the presence of two plasmidic bands. One, three and four plasmids were observed in a plasmid pattern of single isolates. The observation from the study indicated the high genetic polymorphism among the isolates recovered from the animals of one species living in the same environment.  相似文献   

15.
Several natural isolates of Escherichia coli O157:H7 have previously been shown to exhibit stationary-phase-dependent variation in their resistance to inactivation by high hydrostatic pressure. In this report we demonstrate that loss of the stationary-phase-inducible sigma factor RpoS resulted in decreased resistance to pressure in E. coli O157:H7 and in a commensal strain. Furthermore, variation in the RpoS activity of the natural isolates of O157:H7 correlated with the pressure resistance of those strains. Heterogeneity was noted in the rpoS alleles of the natural isolates that may explain the differences in RpoS activity. These results are consistent with a role for rpoS in mediating resistance to high hydrostatic pressure in E. coli O157:H7.  相似文献   

16.
Studies of the variation in recombination rate across the genome provide a better understanding of evolutionary genomics and are also an important step towards mapping and dissecting complex traits in domestic animals. With the recent completion of the porcine genome sequence and the availability of a high‐density porcine single nucleotide polymorphism (SNP) array, it is now possible to construct a high‐density porcine linkage map and estimate recombination rate across the genome. A total of 416 animals were genotyped with the Porcine SNP60BeadChip, and high‐density chromosome linkage maps were constructed using CRI‐MAP, assuming the physical order of the Sscrofa10 assembly. The total linkage map length was 2018.79 cM, using 658 meioses and 14 503 SNPs. The estimated average recombination rate across the porcine autosomes was 0.86 cM/Mb. However, a large variation in recombination rate was observed among chromosomes. The estimated average recombination rates (cM/Mb) per chromosome ranged from 0.48 in SSC1 to 1.48 in SSC10, displaying a significant negative correlation with the chromosome sizes. In addition, the analysis of the variation in the recombination rates taking 1‐Mb sliding windows has allowed us to demonstrate the variation in recombination rates within chromosomes. In general, a larger recombination rate was observed in the extremes than in the centre of the chromosome. Finally, the ratio between female and male recombination rates was also inferred, obtaining a value of 1.38, with the heterogametic sex having the least recombination.  相似文献   

17.
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response.  相似文献   

18.
The African trypanosome genome   总被引:1,自引:0,他引:1  
The haploid nuclear genome of the African trypanosome, Trypanosoma brucei, is about 35 Mb and varies in size among different trypanosome isolates by as much as 25%. The nuclear DNA of this diploid organism is distributed among three size classes of chromosomes: the megabase chromosomes of which there are at least 11 pairs ranging from 1 Mb to more than 6 Mb (numbered I-XI from smallest to largest); several intermediate chromosomes of 200-900 kb and uncertain ploidy; and about 100 linear minichromosomes of 50-150 kb. Size differences of as much as four-fold can occur, both between the two homologues of a megabase chromosome pair in a specific trypanosome isolate and among chromosome pairs in different isolates. The genomic DNA sequences determined to date indicated that about 50% of the genome is coding sequence. The chromosomal telomeres possess TTAGGG repeats and many, if not all, of the telomeres of the megabase and intermediate chromosomes are linked to expression sites for genes encoding variant surface glycoproteins (VSGs). The minichromosomes serve as repositories for VSG genes since some but not all of their telomeres are linked to unexpressed VSG genes. A gene discovery program, based on sequencing the ends of cloned genomic DNA fragments, has generated more than 20 Mb of discontinuous single-pass genomic sequence data during the past year, and the complete sequences of chromosomes I and II (about 1 Mb each) in T. brucei GUTat 10.1 are currently being determined. It is anticipated that the entire genomic sequence of this organism will be known in a few years. Analysis of a test microarray of 400 cDNAs and small random genomic DNA fragments probed with RNAs from two developmental stages of T. brucei demonstrates that the microarray technology can be used to identify batteries of genes differentially expressed during the various life cycle stages of this parasite.  相似文献   

19.
A reference collection of natural isolates of Escherichia coli has been studied in order to determine the distribution, abundance and joint occurrence of DNA insertion elements IS4 and IS5. Among these isolates, 36% were found to contain IS4 and 30% were found to contain IS5. Among strains containing IS4 the mean number of copies per strain was 4.4 +/- 0.8; the comparable figure for IS5 was 3.7 +/- 1.0. Although the presence of the elements among the isolates was independent, among those isolates containing both IS4 and IS5, there was a significant negative correlation in the number of copies of the elements. The reference collection was also studied for the presence of the DNA sequences flanking the single copy of IS4 in the chromosome of E. coli K12. Homologous sequences were found in only 26% of the isolates. The sequences flanking the IS4 invariably occur together, and their presence is significantly correlated with the presence of IS4. In eight of the strains that carry these flanking sequences, an IS4 is located between them, and the sequences are present at the homologous position as in the K12 strain. We suggest that IS4 and its flanking sequences share a common mechanism of dissemination, such as plasmids, and we present evidence that they are included in a much larger transposable element.  相似文献   

20.
We produced electrophoretic karyotypes of the reference strain E150 and of seven other isolates from different geographical origins to study the genomic organization of the dimorphic yeast Yarrowia lipolytica. These karyotypes differed in the number and size of the chromosomal bands. The karyotype of the reference stain E150 consisted of five bands of between 2.6 and 4.9 Mb in size. This strain contained at least five rDNA clusters, from 190 to 620 kb in size, which were scattered over most of the chromosomes. The assignment of 43 markers, including rRNA genes and three centromeres, to the E150 bands defined five linkage groups. Hybridization to the karyotypes of other isolates with pools of markers of each linkage group showed that linkage groups I, II, IV and V were conserved in the strains tested whereas group III was not and was split between at least two chromosomes in most strains. Use of a meganuclease I-SceI site targeted to one locus of E150 linkage group III showed that two chromosomes actually comigrated in band III of this strain. Our results are compatible with six chromosomes defining the haploid complement of strains of Y. lipolytica and that, despite an unprecedented chromosome length polymorphism, the overall structure of the genome is conserved in different isolates. Received: 27 March 1997; in revised form: 8 July 1997 / Accepted: 9 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号