首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal segment of the loop between transmembrane helices 2 and 3 (A(L) region) of the plasma membrane Ca(2+) pump (PMCA) is not conserved in other P-ATPases. Part of this region, just upstream from the third transmembrane domain, has been associated with activation of the PMCA by acidic lipids. cDNAs coding for mutants of the Ca(2+) pump isoform h4xb with deletions in the A(L) region were constructed, and the proteins were successfully expressed in either COS or Chinese hamster ovary cells. Mutants with deletions in the segment 296-349 had full Ca(2+) transport activity, but deletions involving the segment of amino acids 350-356 were inactive suggesting that these residues are required for a functional PMCA. In the absence of calmodulin the V(max) of mutant d296-349 was similar to that of the recombinant wild type pump, but its K(0.5) for Ca(2+) was about 5-fold lower. The addition of calmodulin increased the V(max) and the apparent Ca(2+) affinity of both the wild type and d296-349 enzymes indicating that the activating effects of calmodulin were not affected by the deletion. At low concentrations of Ca(2+) and in the presence of saturating amounts of calmodulin, the addition of phosphatidic acid increased about 2-fold the activity of the recombinant wild type pump. In contrast, under these conditions phosphatidic acid did not significantly change the activity of mutant d296-349. Taken together these results suggest that (a) deletion of residues 296-349 recreates a form of PMCA similar to that resulting from the binding of acidic lipids at the A(L) region; (b) the A(L) region acts as an acidic lipid-binding inhibitory domain capable of adjusting the Ca(2+) affinity of the PMCA to the lipid composition of the membrane; and (c) the function of the A(L) region is independent of the autoinhibition by the C-terminal calmodulin-binding region.  相似文献   

2.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

3.
The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.  相似文献   

4.
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.  相似文献   

5.
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca(2+) pump(s) (PMCA) isoform 1. PMCA extrude Ca(2+) from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1-4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca(2+)-Mg(2+)-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant=17±2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant=45±4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca(2+) concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

6.
Lin MC  Jan CR 《Life sciences》2002,71(9):1071-1079
The effect of the anti-anginal drug fendiline on intracellular free Ca(2+) levels ([Ca(2+)](i)) in a rabbit corneal epithelial cell line (SIRC) was explored using fura-2 as a fluorescent Ca(2+) indicator. At a concentration above 1 microM, fendiline increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 7 microM. The [Ca(2+)](i) response consisted of an immediate rise and an elevated phase. Extracellular Ca(2+) removal decreased half of the [Ca(2+)](i )signal. Fendiline induced quench of fura-2 fluorescence by Mn(2+) (50 microM), suggesting the presence of Ca(2+) influx across the plasma membrane. This Ca(2+) influx was abolished by La(3+) (50 microM), but was insensitive to dihydropyridines, verapamil and diltiazem. Fendiline (10 microM)-induced store Ca(2+) release was largely reduced by pretreatment with thapsigargin (1 microM) (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+). Conversely, pretreatment with 10 microM fendiline abolished thapsigargin-induced Ca(2+) release. Fendiline (10 microM)-induced Ca(2+) release was not altered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Cumulatively, this study shows that fendiline induced concentration-dependent [Ca(2+)](i )increases in corneal epithelial cells by releasing the endoplasmic reticulum Ca(2+) in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

7.
There is controversy over whether Ca(2+) binds to the BK(Ca) channel's intracellular domain or its integral-membrane domain and over whether or not mutations that reduce the channel's Ca(2+) sensitivity act at the point of Ca(2+) coordination. One region in the intracellular domain that has been implicated in Ca(2+) sensing is the "Ca(2+) bowl". This region contains many acidic residues, and large Ca(2+)-bowl mutations eliminate Ca(2+) sensing through what appears to be one type of high-affinity Ca(2+)-binding site. Here, through site-directed mutagenesis we have mapped the residues in the Ca(2+) bowl that are most important for Ca(2+) sensing. We find acidic residues, D898 and D900, to be essential, and we find them essential as well for Ca(2+) binding to a fusion protein that contains a portion of the BK(Ca) channel's intracellular domain. Thus, much of our data supports the conclusion that Ca(2+) binds to the BK(Ca) channel's intracellular domain, and they define the Ca(2+) bowl's essential Ca(2+)-sensing motif. Overall, however, we have found that the relationship between mutations that disrupt Ca(2+) sensing and those that disrupt Ca(2+) binding is not as strong as we had expected, a result that raises the possibility that, when examined by gel-overlay, the Ca(2+) bowl may be in a nonnative conformation.  相似文献   

8.
Mutant cDNAs encoding h4 plasma membrane Ca(2+) pumps with deletions in the N-terminal segment have been constructed and expressed in COS cells. As judged by immunoblotting, each construct was expressed at a high level similar to that of the wild-type enzyme. The removal of the first six amino acids had no effect on the Ca(2+) transport activity, but deletions in the segment 15-75 reduced the activity to undetectable levels. The d(43-56)h4 mutant, lacking amino acids 43-56, was also efficiently expressed in stable form in CHO cells. The Ca(2+) transport activity of d(43-56)h4 in this system was about 40% of that of the wild type. The d(43-56)h4 enzyme exhibited a similar affinity for Ca(2+), a slightly increased apparent affinity for ATP, and a slightly lower sensitivity to inhibition by vanadate than the wild-type enzyme. Analysis of the phosphoenzyme intermediate formed in the presence of lanthanum showed that the phosphorylation reaction was not affected, but the maximum amount of phosphoenzyme was reduced to the same extent as the Ca(2+) transport activity. These results suggest that the expressed d(43-56)h4 was a mixture of fully active and inactive enzyme. The d(43-56)h4 enzyme was more easily degraded by proteases and had a higher sensitivity to heat inactivation than the wild type suggesting that the loss of function was due to the improper folding and instability of the mutant protein. On the basis of these findings, it appears that the N-terminal segment of the plasma membrane Ca(2+) pump is neither essential for synthesis nor for catalytic activity but is critical for the expression of a correctly folded functional enzyme.  相似文献   

9.
S100A4 takes part in control of tumour cell migration and contributes to metastatic spread in in vivo models. In the active dimeric Ca(2+)-bound state it interacts with multiple intracellular targets. Conversely, oligomeric forms of S100A4 are linked with the extracellular function of this protein. We report the 1.5A X-ray crystal structure of Ca(2+)-bound S100A4 and use it to identify the residues involved in target recognition and to derive a model of the oligomeric state. We applied stopped-flow analysis of tyrosine fluorescence to derive kinetics of S100A4 activation by Ca(2+) (k(on)=3.5 microM(-1)s(-1), k(off)=20s(-1)).  相似文献   

10.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   

11.
Ca(2+)-induced Ca(2+) release (CICR) enhances a variety of cellular Ca(2+) signaling and functions. How CICR affects impulse-evoked transmitter release is unknown. At frog motor nerve terminals, repetitive Ca(2+) entries slowly prime and subsequently activate the mechanism of CICR via ryanodine receptors and asynchronous exocytosis of transmitters. Further Ca(2+) entry inactivates the CICR mechanism and the absence of Ca(2+) entry for >1 min results in its slow depriming. We now report here that the activation of this unique CICR markedly enhances impulse-evoked exocytosis of transmitter. The conditioning nerve stimulation (10-20 Hz, 2-10 min) that primes the CICR mechanism produced the marked enhancement of the amplitude and quantal content of end-plate potentials (EPPs) that decayed double exponentially with time constants of 1.85 and 10 min. The enhancement was blocked by inhibitors of ryanodine receptors and was accompanied by a slight prolongation of the peak times of EPP and the end-plate currents estimated from deconvolution of EPP. The conditioning nerve stimulation also enhanced single impulse- and tetanus-induced rises in intracellular Ca(2+) in the terminals with little change in time course. There was no change in the rate of growth of the amplitudes of EPPs in a short train after the conditioning stimulation. On the other hand, the augmentation and potentiation of EPP were enhanced, and then decreased in parallel with changes in intraterminal Ca(2+) during repetition of tetani. The results suggest that ryanodine receptors exist close to voltage-gated Ca(2+) channels in the presynaptic terminals and amplify the impulse-evoked exocytosis and its plasticity via CICR after Ca(2+)-dependent priming.  相似文献   

12.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

13.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

14.
Selective permeability in voltage-gated Ca(2+) channels is dependent upon a quartet of pore-localized glutamate residues (EEEE locus). The EEEE locus is widely believed to comprise the sole high-affinity Ca(2+) binding site in the pore, which represents an overturning of earlier models that had postulated two high-affinity Ca(2+) binding sites. The current view is based on site-directed mutagenesis work in which Ca(2+) binding affinity was attenuated by single and double substitutions in the EEEE locus, and eliminated by quadruple alanine (AAAA), glutamine (QQQQ), or aspartate (DDDD) substitutions. However, interpretation of the mutagenesis work can be criticized on the grounds that EEEE locus mutations may have additionally disrupted the integrity of a second, non-EEEE locus high-affinity site, and that such a second site may have remained undetected because the mutated pore was probed only from the extracellular pore entrance. Here, we describe the results of experiments designed to test the strength of these criticisms of the single high-affinity locus model of selective permeability in Ca(2+) channels. First, substituted-cysteine accessibility experiments indicate that pore structure in the vicinity of the EEEE locus is not extensively disrupted as a consequence of the quadruple AAAA mutations, suggesting in turn that the quadruple mutations do not distort pore structure to such an extent that a second high affinity site would likely be destroyed. Second, the postulated second high-affinity site was not detected by probing from the intracellularly oriented pore entrance of AAAA and QQQQ mutants. Using inside-out patches, we found that, whereas micromolar Ca(2+) produced substantial block of outward Li(+) current in wild-type channels, internal Ca(2+) concentrations up to 1 mM did not produce detectable block of outward Li(+) current in the AAAA or QQQQ mutants. These results indicate that the EEEE locus is indeed the sole high-affinity Ca(2+) binding locus in the pore of voltage-gated Ca(2+) channels.  相似文献   

15.
The N-terminal segment of the plasma membrane Ca2+ pump (PMCA) is one of the most variable regions among the four isoforms of the enzyme and its functional importance is unknown. In the present work, the N-terminal segment of the highly active C-terminally truncated h4 mutant, h4(ct120) was modified either by substituting residues 18-43 by residues 43-75 or by replacing residues 1-75 by the homologous region from isoform h1 (residues 1-79). Immunoblot analysis of microsomal membranes from transfected COS-1 cells showed that the two N-terminally mutated proteins were correctly expressed at a level similar to that of h4(ct120). Measurements of the Ca2+ uptake by microsomal vesicles from transfected COS-1 cells indicated that mutant (18-43-->43-75)h4(ct120) had only negligible Ca2+ transport activity while the chimeric (n1-79)h1h4(ct120) enzyme was fully capable of functioning as a calcium pump.Like h4(ct120), the chimeric mutant was not stimulated further by calmodulin, and was inhibited to a similar degree by the C28R2 peptide corresponding to the calmodulin binding autoinhibitory region of the pump. Moreover, the apparent affinity for Ca2+ and the ATP dependence of the chimeric enzyme were similar to those of the h4(ct120) pump suggesting that the variability of sequence between the N-terminal segment of PMCA isoforms h1 and h4 involves amino acid substitutions that do not substantially change the behavior of the h4 enzyme. Altogether, these results demonstrate that for activity the h4 Ca pump requires a specific amino acid sequence at its N-terminus, and the essential elements for a fully active enzyme can be provided by the N-terminal segment of isoform h1 despite the variability.  相似文献   

16.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

17.
A reconstitution system allowed us to measure the ATPase activity of specific isoforms of the plasma membrane Ca(2+) pump continuously, and to measure the effects of adding or removing calmodulin. The rate of activation by calmodulin of isoform 4b was found to be very slow, with a half-time (at 235 nM calmodulin and 0.5 microM free Ca(2+)) of about 1 min. The rate of inactivation of isoform 4b when calmodulin was removed was even slower, with a half-time of about 20 min. Isoform 4a has a lower apparent affinity for calmodulin than 4b, but its activation rate was surprisingly faster (half time about 20 s). This was coupled with a much faster inactivation rate, consistent with its low affinity. A truncated mutant of isoform 4b also had a more rapid activation rate, indicating that the downstream inhibitory region of full-length 4b contributed to its slow activation. The results indicate that the slow activation is due to occlusion of the calmodulin-binding domain of 4b, caused by its strong interaction with the catalytic core. Since the activation of 4b occurs on a time scale comparable to that of many Ca(2+) spikes, this phenomenon is important to the function of the pump in living cells. The slow response of 4b indicates that this isoform may be the appropriate one for cells which respond slowly to Ca(2+) signals.  相似文献   

18.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

19.

Aims

Being one of the most polymorphic genetic systems , the Human Leukocyte Antigen system is divided into class I (HLA-A, HLA-B and HLA-C) and class II (HLA-DP, -DQ and -DR). This study is the first and largest of its kind to describe the distribution of HLA-DQB1 and HLA-DRB1 alleles in Lebanon and the region.

Methods

Respectively, 560 and 563 Lebanese individuals referred for HLA typing and possible bone marrow/kidney donation were tested for HLA-DQB1 and HLA-DRB1 alleles using the polymerase chain reaction/sequence specific priming (PCR-SSP) method.

Results

Our data were compared to that of several populations with interesting common findings between the Lebanese, Jordanian, Bahraini, Saudi, Kuwaiti, Tunisian, Korean, Japanese, Thai, Irish, Bulgarian and Polish populations.

Conclusion

These data about the Lebanese population are going to aid future researchers to study the relation of HLA-DQB1 and HLA-DRB1 alleles with major and common diseases in the Lebanese population and will add to the available international literature associated with these loci. In addition it will serve as a reference for the future national bone marrow registry program in our country. We also reviewed the literature for the described association between HLA-DRB1 and -DQB1 loci and different disease entities.  相似文献   

20.
When stimulated by glucose, the pancreatic beta-cell displays large oscillations of intracellular free Ca2+ concentration ([Ca2+]i). To control [Ca2+]i, the beta-cell must be equipped with potent mechanisms for Ca2+ extrusion. We studied the expression of the plasma membrane Ca(2+)-ATPases (PMCA) in three insulin secreting preparations (a pure beta-cell preparation, RINm5F cells and pancreatic islet cells), using reverse-transcribed PCR, RNase protection assay and Western blotting. The four main isoforms, PMCA1, PMCA2, PMCA3 and PMCA4 were expressed in the three preparations. Six alternative splice mRNA variants, characterized at splice sites A, B and C were detected in the three preparations (rPMCA1xb, 2yb, 2wb, 3za, 3zc, 4xb), plus two additional variants in pancreatic islet cells (PMCA4za, 1xkb). The latter variant corresponded to a novel variant of rat PMCA1 gene lacking the exon coding for the 10th transmembrane segment, at splice site B. At the mRNA and protein level, five variants predominated (1xb, 2wb, 3za, 3zc, 4xb), whilst one additional isoform (4za), predominated at the protein level only. This provides the first evidence for the presence of PMCA2 and PMCA3 isoforms at the protein level in non-neuronal tissue. Hence, the pancreatic beta-cell is equipped with multiple PMCA isoforms with possible differential regulation, providing a full range of PMCAs for [Ca2+]i regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号