首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study exploited the contrasting major element chemistry of adjacent, physically separable crystals of framework and sheet silicates in a pegmatitic granite to investigate the mineralogical influences of fungal community structure on mineral surfaces. Large intact crystals of variably weathered muscovite, plagioclase, K-feldspar, and quartz were individually extracted, together with whole-rock granite. Environmental scanning electron microscopy (ESEM) revealed a diversity of fungal structures, with microcolonial fungi and fungal hyphae clearly visible on surfaces of all mineral types. Fungal automated ribosomal intergenic spacer analysis (FARISA) was used to generate a ribotype profile for each mineral sample and a randomization test revealed that ribotype profiles, or community fingerprints, differed between different mineral types. Canonical correspondence analysis (CCA) revealed that mineral chemistry affected individual fungal ribotypes, and strong relationships were found between certain ribotypes and particular chemical elements. This finding was further supported by analysis of variance (ANOVA) of the 16 most abundant ribotypes within the community. Significantly, individual ribotypes were largely restricted to single mineral types and ribotypes clustered strongly on the basis of mineral type. CCA also revealed that Al, Si, and Ca had a significant impact on fungal community structure within this system. These results show that fungal community structure was driven by the chemical composition of mineral substrates, indicating selective pressure by individual chemical elements on fungal populations in situ.  相似文献   

2.
This laboratory study of a variably mineralized and hydrothermally altered granite outcrop investigated the influences of rock-surface chemistry and heavy metal content on resident bacterial populations. Results indicated that elevated heavy metal concentrations had a profound impact on bacterial community structure, with strong relationships found between certain ribotypes and particular chemical/heavy metal elements. Automated ribosomal intergenic sequence analysis (ARISA) was used to assess the nature and extent of bacterial diversity, and this was combined with chemical analysis and multivariate statistics to identify the main geochemical factors influencing bacterial community structure. A randomization test revealed significant changes in bacterial structure between samples, while canonical correspondence analysis (CCA) related each individual ARISA profile to linear combinations of the chemical variables (mineralogy, major element and heavy metal concentrations) revealing the geochemical factors that correlated with changes in the ARISA data. anova was performed to further explore interactions between individual ribotypes and chemical/heavy metal composition, and revealed that a high proportion of ribotypes correlated significantly with heavy metals.  相似文献   

3.
Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125?m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil.  相似文献   

4.
We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known.  相似文献   

5.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

6.
AM真菌对青枯菌和根际细菌群落结构的影响   总被引:12,自引:0,他引:12  
利用传统的平板培养与DGGE相结合的技术手段,研究了接种AM真菌对番茄根际土壤中的青枯菌和细菌群落结构的影响。结果表明,菌根根际土壤中的细菌总量和总DNA量都高于非菌根根际土壤,其中前者的青枯菌种群数量比后者低60倍;DGGE图谱也证实了AM真菌对青枯菌的抑制效应,还揭示出接种AM真菌对根际土壤中细菌群落结构所产生的复杂的影响。文章对AM真菌抑制青枯菌的机制进行了探讨。  相似文献   

7.
The Upper Permian polymetallic, organic-rich Kupferschiefer black shale in the Fore-Sudetic Monocline is acknowledged to be one of the largest Cu-Ag deposits in the world. Here we report the results of the first study of bioweathering of this sedimentary rock by indigenous heterotrophic bacteria. Experiments were performed under laboratory conditions, employing both petrological and microbiological methods, which permitted the monitoring and visualization of geomicrobiological processes. The results demonstrate that bacteria play a prominent role in the weathering of black shale and in the biogeochemical cycles of elements occurring in this rock. It was shown that bacteria directly interact with black shale organic matter to produce a widespread biofilm on the Kupferschiefer shale surface. As a result of bacterial activity, the formation of pits, bioweathering of ore and rock-forming minerals, the mobilization of elements and secondary mineral precipitation were observed. The chemistry of the secondary minerals unequivocally demonstrates the mobilization of elements from minerals comprising Kupferschiefer. The redistribution of P, Al, Si, Ca, Mg, K, Fe, S, Cu and Pb was confirmed. The presence of bacterial outer membrane vesicles on the surface of black shale was observed for the first time. Biomineralization reactions occurred in both the membrane vesicles and the bacterial cells.  相似文献   

8.
Forest ecosystems have integral roles in climate stability, biodiversity and economic development. Soil stewardship is essential for sustainable forest management. Organic matter (OM) removal and soil compaction are key disturbances associated with forest harvesting, but their impacts on forest ecosystems are not well understood. Because microbiological processes regulate soil ecology and biogeochemistry, microbial community structure might serve as indicator of forest ecosystem status, revealing changes in nutrient and energy flow patterns before they have irreversible effects on long-term soil productivity. We applied massively parallel pyrosequencing of over 4.6 million ribosomal marker sequences to assess the impact of OM removal and soil compaction on bacterial and fungal communities in a field experiment replicated at six forest sites in British Columbia, Canada. More than a decade after harvesting, diversity and structure of soil bacterial and fungal communities remained significantly altered by harvesting disturbances, with individual taxonomic groups responding differentially to varied levels of the disturbances. Plant symbionts, like ectomycorrhizal fungi, and saprobic taxa, such as ascomycetes and actinomycetes, were among the most sensitive to harvesting disturbances. Given their significant ecological roles in forest development, the fate of these taxa might be critical for sustainability of forest ecosystems. Although abundant bacterial populations were ubiquitous, abundant fungal populations often revealed a patchy distribution, consistent with their higher sensitivity to the examined soil disturbances. These results establish a comprehensive inventory of bacterial and fungal community composition in northern coniferous forests and demonstrate the long-term response of their structure to key disturbances associated with forest harvesting.  相似文献   

9.
This study tests the hypothesis that altering the mineral composition of soil influences microbial community structure in a nutrient-deficient soil. Microcosms were established by adding mica (M), basalt (B) and rock phosphate (P) to soil separately, and in combination (MBP), and by planting with Lolium rigidum, Trifolium subterraneum or by leaving unplanted. The effects of mineral and plant treatments on microbial community structure were assessed using automated ribosomal intergenic spacer analysis. Bacterial community structure was significantly affected by both mineral (global R=0.73 and P<0.001) and plant (global R=0.71 and P<0.001) treatments, as was the fungal community structure: mineral (global R=0.65 and P<0.001) and plant (global R=0.65 and P<0.001) treatments. All pairwise comparisons of bacterial and fungal communities between different mineral treatments and between different plant treatments were significantly different (P<0.05). This study has shown that mineral addition to soil microcosms resulted in substantial changes in both bacterial and fungal community structure, dependent on the type of mineral added and the plant species present. These results suggest that the mineral composition of soil may be an important factor influencing the microbial community structure in soil.  相似文献   

10.
11.
Potassium (K) is a major element for plant growth. The K+ ions fixed in soil 2:1 clay mineral interlayers contribute to plant K nutrition. Such clay minerals are most often the majority in temperate soils. Field and laboratory observations based on X-ray diffraction techniques suggest that 2:1 clay minerals behave as a K reservoir. The present work investigated this idea through data from a replicated long term fertilization experiment which allowed one to address the following questions: (1) Do fertilization treatments induce some modifications (as seen from X-ray diffraction measurements) on soil 2:1 clay mineralogy? (2) Are soil 2:1 clay mineral modifications related to soil K budget in the different plots? (3) Do fertilizer treatments modify clay Al, Si, Mg, Fe or K elemental content? (4) Are clay mineral modifications related to clay K content modifications? (5) Are clay mineral changes related to clay Al, Si, Mg or Fe content as well as those of K content? Our results showed that K fertilization treatments considered in the context of soil K budget are very significantly related to 2:1 soil clay mineralogy and clay K content. The 2:1 clay mineral modifications observed through X-ray measurements were quantitatively correlated with chemically analyzed clay K content. Clay K content modifications are independent from clay Al, Si, Mg or Fe contents. These results show that the soil chemical environment can modify interlayer site occupations (illite content) which suggests that high level accumulation of potassium can occur without any modification of the clay sheet structure. This study therefore validates the view of 2:1 clay minerals as a K reservoir easily quantifiable through X-ray observations.  相似文献   

12.
古大湖湿地盐碱土壤微生物群落结构及多样性分析   总被引:2,自引:0,他引:2  
以黑龙江省古大湖湿地原生、林地、耕地及湖岸盐碱土壤微生物为研究对象,基于高通量测序方法,分析4种生境类型条件下土壤细菌和真菌群落结构及多样性。结合土壤理化指标,进一步分析影响微生物群落多样性的环境因子。结果表明:细菌群落中变形菌门的相对丰度值最高,真菌群落中为子囊菌门。同一生境细菌群落多样性具有相似性,而真菌具有一定的差异;不同生境间两者均具有差异。耕地土壤和林地土壤的细菌群落多样性接近,但与湖岸土壤真菌的更相近。前两者中细菌群落多样性较高,其次为原生土壤,而湖岸土壤中的最低。耕地土壤与湖岸土壤真菌群落多样性较高,原生土壤较低,而林地土壤中最低。与真菌相比,细菌的群落多样性受土壤环境因子影响更大,其中pH值、含水量对土壤细菌和真菌群落多样性均具有显著影响。  相似文献   

13.
A microcosm-based approach was used to study impacts of plant and chemical factors on the fungal community structure of an upland acidic grassland soil. Seven plant species typical of both unimproved and fertilized grasslands were either left unamended or treated with lime, nitrogen or lime plus nitrogen. Fungal community structure was assessed by a molecular approach, fungal automated ribosomal intergenic spacer analysis (FARISA), while fungal biomass was estimated by measuring soil ergosterol content. Addition of nitrogen (with or without lime) had the largest effect, decreasing soil pH, fungal biomass and fungal ribotype number, but there was little corresponding change in fungal community structure. Although different plant species were associated with some changes in fungal biomass, this did not result in significant differences in fungal community structure between plant species. Addition of lime alone caused no changes in fungal biomass, ribotype number or community structure. Overall, fungal community structure appeared to be more significantly affected through interactions between plant species and chemical treatments, as opposed to being directly affected by changes in individual improvement factors. These results were in contrast to those found for the bacterial communities of the same soils, which changed substantially in response to chemical (lime and nitrogen) additions.  相似文献   

14.
15.
In order to study interactions between microorganisms at different nutrient conditions in an arctic environment, a mesocosm experiment was performed in Kongsfjorden, Svalbard (79°N). A phytoplankton bloom was initiated by daily additions of mineral nutrients (ammonium and phosphate) to all mesocosm units. The addition of silicate and glucose, forming a factorial design (+Si/+C, +Si/−C, −Si/+C, −Si/−C), was intended to produce different types of growth rate limitation for the bacterial community. We here focus on the response in bacterial community composition to different nutrient situations. Phytoplankton, bacteria and viruses were enumerated by flow cytometry, while denaturing gradient gel electrophoresis (DGGE) was used to track changes in the bacterial community composition. Our results showed that both glucose and silicate addition affected the bacterial community composition, with the largest effect from glucose. The initial increase in bacterial abundance was most pronounced in the glucose units. After silicate addition, highest bacterial abundance was observed in the silicate treatments where mineral nutrient competition by diatoms was expected to be highest. The major effect of glucose was expressed by the significant separation of the +C and the −C samples at the end of the experiment, while silicate addition resulted in a more stable bacterial community structure. In the unit, given both silicate and glucose, the diatoms were totally outcompeted by the bacterial community. The competitive success of the heterotrophic bacteria in C-replete situations allows the conclusion that the bacteria were not more negatively affected by low temperatures than phytoplankton.  相似文献   

16.
Caves are extreme and specialised habitats for terrestrial life that sometimes contain moonmilk, a fine-grained paste-like secondary mineral deposit that is found in subterranean systems worldwide. While previous studies have investigated the possible role of microorganisms in moonmilk precipitation, the microbial community ecology of moonmilk deposits is poorly understood. Bacterial and fungal community structure associated with four spatially isolated microcrystalline, acicular calcite moonmilk deposits at Ballynamintra Cave (S. Ireland) was investigated during this study. Statistical analyses revealed significant differences in microbial activity, number of bacterial species, bacterial richness and diversity, and fungal diversity (Shannon's diversity) among the moonmilk sites over an area of approximately 2.5 m2. However, the number of fungal species and fungal community richness were unaffected by sampling location. SIMPER analysis revealed significant differences in bacterial and fungal community composition among the sampling sites. These data suggest that a rich assemblage of microorganisms exists associated with moonmilk, with some spatial diversity, which may reflect small-scale spatial differences in cave biogeochemistry.  相似文献   

17.
以中国科学院沈阳生态试验站的长期定位试验为平台,研究了不同施肥和土壤管理对潮棕壤微生物生物量碳、氮和群落结构的影响。结果表明,裸地和农田处理的微生物生物量碳、氮较低,但是农田处理下施肥增加了微生物生物量,其中NPK+M效果最明显。DGGE图谱显示,处理间细菌条带分布较相似,其中裸地的细菌多样性最高;长期施肥和土壤管理改变了土壤真菌群落结构,施肥增加了真菌多样性,且有机肥的影响大于化肥;不同处理间氨氧化细菌群落结构差异显著,NPK+M显著增加了氨氧化细菌多样性,且无机肥和有机肥对氨氧化细菌群落影响不同。施肥和土壤管理对细菌影响较小,但显著改变了真菌和氨氧化细菌的群落结构。聚类分析结果显示,土壤管理措施较施肥对细菌、真菌和氨氧化细菌群落的影响更为显著。  相似文献   

18.
BackgroundBiomedical application is based on the use of LIBS-derived data on chemical contents of tissues in diagnosis of diseases, forensic investigation, as well as a mechanism for providing online feedback for laser surgery. Although LIBS has certain advantages, the issue of correlation of LIBS-derived data on chemical element content in different human and animal tissues with other methods, and especially ICP-MS, remains pertinent. The objective of the present review was to discuss the application of laser-induced breakdown spectroscopy (LIBS) for elemental analysis of human biosamples or tissues from experimental models of human diseases. Methods. A systematic search in the PubMed-Medline, Scopus, and Google Scholar databases using the terms laser-induced breakdown spectroscopy, LIBS, metals, trace elements, minerals, and names of particular chemical elements was performed up through 25 February, 2023. Of all extracted studies only those dealing with human subjects, human tissues, in vivo animal and in vitro cell line models of human diseases were reviewed in detail. Results. The majority of studies revealed a wide number of metals and metalloids in solid tissues including teeth (As, Ag, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, P, Pb, Sn, Sr, Ti, and Zn), bones (Al, Ba, Ca, Cd, Cr, K, Mg, Na, Pb, Sr), and nails (Al, As, Ca, Fe, K, Mg, Na, P, Pb, Si, Sr, Ti, Zn). At the same time, LIBS was also used for estimation of trace element and mineral content in hair (Ca, Cu, Fe, K, Mg, Na, Zn), blood (Al, Ca, Co, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Si, Sn, Zn), cancer tissues (Ca, Cu, Fe, Mg, K, Na, Zn) and other tissues. Single studies revealed satisfactory correspondence between quantitative LIBS and ICP-OES/MS data on the level of As (81–93 %), Pb (94–98 %), Cd (50–94 %) in teeth, Cu (97–105 %), Fe (117 %), Zn (88–117 %) in hair, Ca (97–99 %), Zn (90–95 %), and Pb (61–82 %) in kidney stones. LIBS also estimated specific patterns of trace element and mineral content associated with multiple pathologies, including caries, cancer, skin disorders, and other systemic diseases including diabetes mellitus type 2, osteoporosis, hypothyroidism, etc. Data obtained from in situ tissue LIBS analysis were profitably used for discrimination between tissue types. Conclusions. Taken together, the existing data demonstrate the applicability of LIBS for medical studies, although further increase in its sensitivity, calibration range, cross-validation, and quality control is required.  相似文献   

19.
The hypothesis tested in this present study was that the ectomycorrhizosphere effect on the bacterial community was not root-growth-dependent. The impacts of ectomycorrhizal infection (Pisolithus albus COI007) and a chemical fertilization to reproduce the fungal effect on root growth were examined on (1) the structure of bacterial community and (2) fluorescent pseudomonad and actinomycete populations in the mycorrhizosphere of Acacia auriculiformis using both culture-independent and culture-dependent methods. A. auriculiformis plants were grown in disinfested soil in pots with or without addition of the ectomycorrhizal fungus or N/P/K fertilization (to reproduce the fungal effect on root growth) for 4 months and then transferred to 20-L pots filled with nondisinfested sandy soil. The fungal and fertilizer applications significantly improved the plant growth after 4-month culture in the disinfested soil. In the nondisinfested cultural substrate, these positive effects on plant growth were maintained. The total soil microbiota was significantly different within the treatments as revealed from DNA analysis [denaturing gradient gel electrophoresis (DGGE)]. The structure of fluorescent pseudomonad populations was also affected by fungal and fertilizer applications. In contrast, no qualitative effect was observed for the actinomycete communities within each treatment, but fungal inoculation significantly decreased the number of actinomycetes compared to the fertilizer application treatment. These results show that the mycorrhizosphere effect is not root-growth-dependent but is mainly due to the presence of the ectomycorrhizal fungus and more particularly to the extramatrical mycelium.  相似文献   

20.
The Asian tiger mosquito Aedes albopictus, native to Southeast Asia, has invaded a wide range of tropical and temperate areas worldwide. Recent studies pointed out that invasive populations from Europe harbored reduced bacterial microbiota compared to the native populations. Beside bacteria, mosquitoes also contain fungal communities that have so far been largely ignored. To investigate whether the mosquito invasion process displays a similar impact on fungal diversity, we compared the mycobiota structure of three autochthonous mosquito populations in Vietnam and six populations recently introduced in France and Madagascar. All mosquito populations host a locally structured fungal community and carry a “core mycobiota” dominated by yeasts. However, invasive populations from France and Madagascar harbor a lower fungal diversity compared to Vietnamese populations. These results suggest that similar factors shape the overall composition of the mosquito-associated microbiota during the invasion process as bacterial and fungal communities demonstrate a loss of diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号