首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a macrophotographic technique, kinetic studies were performed on growth and gravireaction, both measured on maize (cv. LG 11) roots. When using intact roots, it was found that the growth rate decreased two hours after the beginning of the gravistimulus, the rate of root curvature being optimal at that time. These two processes are greater in light than in the dark. Subsequently, the curvature rate decreased rapidly to zero in the dark but, in light, it continued for at least a further three hours. There was then a recovery of elongation in darkness whereas in light growth rate remained low. A comparative analysis between root segments and intact roots suggests that the correlation between the growth and the gravireaction rates differs according to the system studied and that light has a greater effect on growth rate when the roots are subject to gravitational stimuli. Present data are discussed in terms of hormone balance between several endogenous regulators.  相似文献   

2.
Ethylene effects on growing and gravireacting maize root segments   总被引:1,自引:0,他引:1  
The effects of ethylene pretreatments (500 nl/l for 1 h) and treatments (100 nl/1 to 1000 nl/l for 6 h) on elongation and gravireaction of apical maize root segments were tested in light and in the dark. Ethylene was found to affect weakly root elongation and gravireaction, but to induce strong curvatures for root growing vertically.  相似文献   

3.
Differences in the extent of anthocyanin production between intermittent light treatments with short and long dark intervals between successive irradiations are more pronounced in dark-grown than in light-pretreated cabbage seedlings. This observation is consistent with the hypothesis, based on destruction kinetics data, that there might be two pools of phytochrome, a labile one and a stable one, present in different proportions in dark-grown and light-pretreated seedlings, and suggests that light-dependent changes of the stable to labile phytochrome ratio might be physiologically significant in the photoregulation of photomorphogenic responses.  相似文献   

4.
A current hypothesis states that there is a redistribution of wall calcium from the lower to the upper sides of horizontal shoots during gravireaction, and because calcium stiffens walls, the unequal calcium distribution results in differential wall extensibility on the upper and lower sides, and thus, causes unequal growth. If this hypothesis is valid, then saturating the cell walls with calcium should minimize the effect of calcium redistribution, and thereby inhibit gravicurvature and stiffen the walls. To test this hypothesis, sunflower seedlings were grown on agar containing 0 to 50molm-3 CaCl2. The wall-bound calcium content of the tissues increased as the external concentration of CaCl2 increased, and the epidermal layers were saturated with calcium by the 10molm-3 CaCl2 treatment. Contrary to the predictions from the hypothesis, the vertical growth and the gravicurvature rate of plants grown in 10molm-3 CaCl2 were actually accelerated, and wall extensibility, as measured by the Instron technique, was unaffected. These results contradict the hypothesis, and provide further evidence that wall-bound calcium is not involved in the reaction phase of gravicurvature.  相似文献   

5.
A comparison between the effects of DIHB and TIBA on growth and gravireaction of 15 mm primary maize ( Zea mays L. cv. LG 11) roots is presented. Intact roots were pretreated in the dark for 1 h with buffered solutions (pH 5.0 or 6.0) containing DIHB (10, 50, 100 μ M ). The plantlets were then maintained either vertically or horizontally in the dark or the light, and growth and gravireaction were recorded using a macrophotographic technique. Pretreatment with DIHB slightly inhibited growth and delayed gravireaction. These effects were most marked with DIHB at 100 μ M and were enhanced when DIHB was applied at pH 5.0. Similar effects were observed in roots pretreated with TIBA, but at a lower concentration (1 μ M ). The similarities between DIHB and TIBA as regards both chemical structure and the inhibition of gravireaction and growth, lead us to suggest that a major mode of action of DIHB, like TIBA, is the inhibition of indol-3yl-acetic acid transport.  相似文献   

6.
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.  相似文献   

7.
Red light (R) pretreatment of etiolated cucumber seedlings ( Cucumis sativus L. var. Elem) followed by prolonged dark incubation prior to white light (WL) exposure, had an adverse effect on the greening of the cotyledons. The effect was photoreversible by far-red (FR) light. Cotyledons which were dark incubated for 24 h following the R pulse greened more rapidly when exposed to WL than did the controls, while total chlorophyll (Chl) accumulation after 24 h in the light was about the same in both. However, after 48 h post-R dark incubation greening of the treated cotyledons was delayed, and their amount of Chl which accumulated after 24 h WL was about one half of that in non-treated seedlings. As the length of the post-R dark incubation period was extended Chl production became slower, so that after 96 h post-R dark incubation the Chl level in the treated cotyledons after 24 h WL was approximately 20% of the controls. No significant differences in amounts of protochlorophyll could be detected between seedlings preilluminated with R or R followed by FR. Seedlings 4-, 5- and 6-days-old at the time of R treatment showed similar degrees of impaired Chl synthesis following prolonged post-R dark incubation.  相似文献   

8.
The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.  相似文献   

9.
The redistribution of organelles in columella cells of horizontally-oriented roots of Hordeum vulgare was quantified in order to determine what structural changes in graviperceptive (i.e., columella) cells are associated with the onset of the root gravicurvature. The sedimentation of amyloplasts is the only major change in cellular structure that correlates positively with the onset of root gravicurvature, which begins within 15 min after re-orientation. There is no consistent contact between sedimented amyloplasts and any other organelles. Nuclei are restricted to the proximal ends of columella cells in vertically-oriented roots, and remain there throughout gravicurvature after roots are oriented horizontally. Root gravicurvature does not involve significant changes in (1) the volume of columella cells, (2) the relative or absolute volumes of organelles in columella cells, or (3) the distribution of endoplasmic reticulum (ER). The size, number and sedimentation rates of amyloplasts in columella cells of non-graviresponsive roots of mutant seedlings are not significantly different from those of graviresponsive roots of normal seedlings. Similarly, there is no significant difference in (1) cellular volume, (2) distribution or surface area of ER, (3) patterns or rates of organelle redistribution in horizontally-oriented roots, (4) relative or absolute volumes of organelles in columella cells of graviresponsive and non-graviresponsive roots. These results suggest that the lack of graviresponsiveness by roots of mutant seedlings is probably not due to either (1) structural differences in columella cells, or (2) differences in patterns or rates of organelle redistribution as compared to that characteristic of graviresponsive roots. Thus, the basis of non-graviresponsiveness in this mutant is probably different from other agravitropic mutants so far studied.  相似文献   

10.
Paul-Emile Pilet 《Planta》1979,145(4):403-404
Apical root segments of Zea mays L. cv. Orla 264 undergo some geotropic curvature in complete darkness but the curvature increases considerably if prior to geostimulation the segments are given a light pretreatment. If the light treatment is follwed by a dark treatment before the root is geostimulated the light-induced response is not changed by dark periods up to 2 h but declines with longer ones, and disappears completely after 5 h of darkness.  相似文献   

11.
Moore, R. 1985. A morphometric analysis of the redistributionof organellcs in columella cells in primary roots of normalseedlings and agravitropic mutants of Hordeum vulgare.—J.exp. Bot. 36:1275–1286. The redistribution of organeUes m columella cells of horizontally-orientedroots of Hordeum vulgare was quantified in order to determinewhat structural changes in graviperceptive (i.e, columella)cells are associated with the onset of root gravicurvature.The sedimentation of amyloplasts is the only major change incellular structure that correlates positively with the onsetof root gravicurvature, which begins within 15 min after re-orientation.There is no consistent contact between sedimented amyloplastsand any other organelles. Nuclei are restricted to the proximalends of columella cells in vertically-oriented roots, and remainthere throughout gravicurvature after roots are oriented horizontally.Root gravicurvature does not involve significant changes in(1) the volume of columella cells, (2) the relative or absolutevolumes of organelles in columella cells, or (3) the distributionof endoplasmic reticulum (ER). The size, number and sedimentationrates of amyloplasts in columella cells of non-graviresponsiveroots of mutant seedlings are not significantly different fromthose of graviresponsive roots of normal seedlings. Similarly,there is no significant difference in (1) cellular volume, (2)distribution or surface area of ER, (3) patterns or rates oforganelle redistribution in horizontally-oriented roots, or(4) relative or absolute volumes of organelles in columellacells of graviresponsive and non-graviresponsive roots. Theseresults suggest that the lack of gravi-responsiveness by rootsof mutant seedlings is probably not due to either (1) structuraldifferences in columella cells, or (2) differences in patternsor rates of organelle redistribution as compared to that characteristicof graviresponsive roots. Thus, the basis of non-graviresponsivenessin this mutant is probably different from other agravitropicmutants so far studied. Key words: Agravitropic mutant, barley, columella cell, gravitropism (root), Hordeum vulgare, ultrastructure  相似文献   

12.
Primary roots of Zea mays cv. Amylomaize were less graviresponsive than primary roots of the wild-type Calumet cultivar. There were no significant differences in: 1) the partitioning of volume to organelles in columella cells, 2) the size or density of amyloplasts, or 3) rates and overall patterns of organelle redistribution in horizontally-oriented roots of the two cultivars. Amyloplasts and nuclei were the only organelles whose movement correlated positively with the onset of root gravicurvature. However, the onset of gravicurvature was not directly proportional to the average sedimentation rate of amyloplasts, since amyloplasts sedimented at equal rates in columella cells of both cultivars despite their differences in root gravicurvature. The more graviresponsive roots of Calumet seedlings were characterized by a more strongly polar movement of 45Ca2+ from the upper to lower sides of their root tips than the less graviresponsive roots of Amylomaize seedlings. These results suggest that the decreased graviresponsiveness of horizontally-oriented roots of Amylomaize seedlings may be due to a delay in or decreased ability for polar transport of calcium rather than to smaller, more slowly sedimenting amyloplasts as has been suggested for their less graviresponsive coleoptiles.  相似文献   

13.
We have tested the hypothesis that wall-bound calcium is redistributed from the lower to the upper sides of horizontal stems and coleoptiles during the reaction phase of gravicurvature. We used atomic absorption spectrometry to measure wall-bound calcium in the epidermal and internal layers of sunflower (Helianthus annum L.) hypocotyls and pea (Pisum sativum L.) epicotyls, and total calcium in maize (Zea mays L.) coleoptiles at the time of maximal gravireaction. In every case, we found that there was no measurable redistribution of wall-bound calcium either from the lower to the upper sides, or between epidermal and inner tissues in response to the gravistimulus. These results indicate that a redistribution of wall-bound calcium does not play a role during the gravireaction of stems and coleoptiles.  相似文献   

14.
Cotyledons excised without the hypocotyl hook from 6-day-old etiolated cucumber ( Cucumis sativus L. var. Elem) seedlings accumulated a significantly higher amount of chlorophyll than cotyledons excised with hooks or intact cotyledons. It was found that maximum ehancement of greening was achieved after 2 h of dark incubation following excision. Pretreatments with red light effected an additive rise in chlorophyll level in subsequent white light after a dark incubation, suggesting that the effects of excision and phytochrome on greening act independently. Etiolated seedlings were variously dissected before greening and it was found that enhancement occurred only when cotyledons were excised at the level of the hypocotyl hook or above it. Similar results were obtained when the dissected plants were pre-treated with red light.  相似文献   

15.
Li XZ  Oaks A 《Plant physiology》1994,106(3):1145-1149
Both light and NO3- are necessary for the appearance of nitrate reductase (NR) activity (NRA) in photosynthetic tissues. To define the light effect more precisely, we examined the response to light/dark transitions on NRA, NR protein (NRP), and NR mRNA in 6-d-old maize (Zea mays cv W64A x W182E) seedlings that had been grown in a light/dark regime for 5 d and then induced with 5 mM KNO3 for 24 h. The decay of NRA and NR mRNA in the shoot was immediate, but there were only minor changes in NRP during the initial 4 h in the dark. In root tissues, in contrast, there was a 4-h delay in the loss of NRA, NRP, and NR mRNA after transfer to the dark. When the seedlings were returned to light after a 2-h interval in the dark, shoot NRA reached 92% of the initial levels within 30 min of illumination. These results indicate that in the shoots (a) NR message production requires light and (b) the NRP that appears with light treatment and that is active is inactivated in the dark. The NRP can be reactivated when the light is turned on after short periods of darkness (2 h). Root tissues, on the other hand, probably respond to the supply of photosynthetically produced metabolites rather than to immediate products of the light reactions of photosynthesis.  相似文献   

16.
The effects of a synthetic growth promoter, 4-ethoxy-l-( p -tolyl)-S-triazine-2,6 (1H, 3H)-dione [TA], on growth and gravireaction of Zea mays L. (cv. LG 11) roots were investigated. In horizontal, intact roots, pretreatment with TA at 4 × 10−4 M inhibited the gravireaction. If the pretreated roots were rinsed with a buffer solution before incubation, the TA effect was reduced, indicating that a continuous presence of TA was necessary for its maximal activity. On the other hand, the TA pretreatment (1×10−5, 1×10−4 and 4 × 10−4 M ) promoted the elongation of these roots. The TA effect was stronger for illuminated roots than for those kept in darkness. TA also decreased the lateral curvature of half-decapitated roots maintained vertically in light. This indicates that the action of TA could be associated with some growth inhibiting substances produced or released in cap cells.  相似文献   

17.
Dark recovery of blue light-induced in vitro phosphorylation in oat (Avena sativa L.) seedlings after in vivo preirradiation with blue light revealed different recovery kinetics for the coleoptile base and tip. Although, in both cases, maximum in vitro phosphorylation was observed 90 min after in vivo blue light treatment, the phosphorylation levels for the entire base were about 3-fold higher than those found in nonpreirradiated plants. The tip response only slightly exceeded that of the dark controls. The fluence applied during preirradiation determined the extent of the increase in phosphorylation. Consequently, unilateral irradiation and subsequent dark incubation resulted in a more pronounced increase in phosphorylation in the irradiated than in the shaded side of the coleoptile base. Furthermore, blue light-irradiation conditions, known to induce neither first- nor second-positive curvature in nonpreirradiated plants, stimulated both asymmetric distribution of protein phosphorylation and second-positive phototropic curvature in the coleoptile base when administered to blue light-pretreated plants. Based on these data, we conclude that photosensitivity of the coleoptile base increases upon exposure to blue light in a time-and fluence-dependent manner, providing an excellent explanation of the invalidity of the Bunsen-Roscoe reciprocity law for second-positive phototropism.  相似文献   

18.
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.  相似文献   

19.
光照和生长阶段对菖蒲根系泌氧的影响   总被引:1,自引:0,他引:1  
王文林  王国祥  万寅婧  夏劲  唐晓燕  陈昕  梁斌  庄巍 《生态学报》2013,33(12):3688-3696
以自然湖泊沉积物为研究基质,利用微型电机控制溶氧微电极实现纵向精确微位移,在照光与遮光条件下,对典型湿地植物菖蒲幼苗、成株根系根基部起总根长1/4处(根1/4)、根系中部(根1/2)、从根基部起总根长3/4处(根3/4)及根尖(根1)处根系微界面径向溶氧浓度变化进行原位精确测定。结果表明:无论有无光照,菖蒲幼苗、成株根系不同部位均存在从根表面至沉积物氧饱和度由高到低的氧扩散层,其厚度0.18—0.68 mm;根1/2、3/4、1处氧扩散能力菖蒲成株较幼苗显著增强(P<0.01),根1/4处二者则无显著差异(P>0.05);光照对菖蒲幼苗、成株根系不同部位氧扩散能力的影响存在差异,光照对菖蒲幼苗根1/2及菖蒲成株根1/2、根3/4处影响显著(照光组显著高于遮光组,P<0.01),而对菖蒲幼苗根1/4、根3/4、根1及菖蒲成株根1/4、根1处无显著影响(P>0.05);从根系泌氧空间差异上看,照光条件下菖蒲幼苗、成株分别表现为根1/2>根3/4≈根1≈根1/4(P<0.01,P>0.05)和根1/2>根3/4>根1>根1/4(P<0.01),遮光条件下菖蒲幼苗、成株分别表现为根1/2≈根3/4≈根1≈根1/4(P>0.05)和根1/2>根3/4≈根1>根1/4(P<0.01,P>0.05)。  相似文献   

20.
The frequency with which intact leaves and epidermal leaf strips of wheat seedlings were penetrated by Puccinia graminis tritici, strain 21 Anz 2, was observed following exposure of inoculated material to various regimes of illumination/darkness and temperature. Epidermal strips, at 24°C, were penetrated most frequently when continuous light (540 ft-c) was commenced at either 4 or 8,20 or 24, or 36 or 40 h after inoculation or when a 4 h period of light was applied at these times. With both treatments, the curve obtained when the length of the dark period preceding illumination was plotted against the frequency of penetration showed a series of alternate peaks and troughs and the periodicity of the curves was significant at the 1 % probability level. In the former curve the best form of regression was linear modified by a cosine function, while in the latter the linear term proved to be non-significant. When dark periods of different lengths were applied, penetration was more variable on intact leaves than on epidermal strips. Penetration of intact leaves was influenced by the light intensity to which the seedlings were exposed after the dark treatment. The time of day when intact leaves were inoculated influenced penetration when they were grown under controlled conditions. Greatest penetration of the variety Little Club occurred when leaves were inoculated at 1.30 a.m. The time of day when epidermal strips were inoculated did not influence penetration. The inhibitory effect of continuous light on penetration of epidermal strips was overcome by changing the temperature from 18·5 to 24°C. Greatest penetration was obtained when the change was made 24 or 28 h after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号