首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

2.
N-Ethylmaleimide dose dependently inhibited platelet aggregation induced by collagen or arachidonate but did not inhibit the aggregation by thrombin or ionophore A23187 within the concentrations tested. [3H]Arachidonate release from membrane phospholipids of the collagen-stimulated platelets was inhibited by N-ethylmaleimide in parallel with the inhibition of aggregation, but not in response to A23187. N-Ethylmaleimide prevented 45Ca2+ influx into platelet cells from outer medium induced by collagen, and also inhibited the increase in the concentration of cytoplasmic free Ca2+, which probably results from Ca2+ influx, as monitored by quin2 fluorescence, under stimulation with arachidonate. The concentration of N-ethylmaleimide giving a complete inhibition of Ca2+ influx was consistent with that required to inhibit collagen- or arachidonate-induced aggregation. Prostaglandin metabolism from arachidonate to thromboxane A2 was not disturbed by N-ethylmaleimide, while phosphatidate formation induced by arachidonate was slightly inhibited by it at concentrations at which aggregation was completely inhibited. These data suggest that N-ethylmaleimide preferentially suppresses increase in cytoplasmic free Ca2+ which is linked to thromboxane A2-receptor occupation in collagen- or arachidonate-stimulated platelets, probably due to blockage of Ca2+ influx through Ca2+-channel protein, thereby inhibiting aggregation induced by these agonists.  相似文献   

3.
Inhibition of the thrombin-platelet reactions by DuP 714   总被引:1,自引:0,他引:1  
The efficacy and specificity of a novel synthetic thrombin inhibitor, DuP 714, on thrombin-induced elevation of cytoplasmic calcium, fibrinogen binding and aggregation in human platelets were examined. Thrombin (0.5 U/ml) stimulated an increase in [125I]fibrinogen binding in gel-filtered platelets which was blocked by DuP 714 with an IC50 value of 2 nM. Thrombin (1 U/ml)-induced elevation of intracellular [Ca2+]i was also blocked by DuP 714 with an IC50 value of 67 nM. A much higher concentration of thrombin (25 U/ml) was used to stimulate aggregation with heparinized platelet-rich plasma. Under these conditions, micromolar concentrations of DuP 714 were needed to inhibit thrombin. In all of these preparations, DuP 714 at concentrations as high as 10(-5) M had no intrinsic effects and did not affect the responses induced by arachidonate, ADP, collagen, epinephrine, vasopressin and serotonin. These data indicate that DuP 714 is a potent and specific thrombin inhibitor capable of arresting the actions of thrombin on human fibrin formation and platelet aggregation and secretion. It may serve as a potential antithrombotic agent for various forms of thrombotic disorders.  相似文献   

4.
Platelets rapidly convert 1,2-didecanoyl-sn-glycerol into its corresponding phosphatidic acid and lysophosphatidic acid derivatives, thereby providing a means of introducing these two compounds into platelets. 1-Decanoyl-2-lyso-3-sn-phosphatidic acid, when added directly to platelets, induced platelet aggregation and raised intracellular Ca2+ levels at concentrations of 0.3 microM upwards, but was without effect when formed intracellularly from 1,2-didecanoylglycerol at an estimated concentration of approx. 47 microM. This indicates that the site of platelet activation by lysophosphatidic acid is extracellular. A concentration of thrombin (0.2 unit/ml), which produced maximal platelet aggregation, caused an estimated intracellular formation of 20 microM-lysophosphatidic acid in the presence of 2 mM-Ca2+; however, there was no detectable release of lysophosphatidic acid into the bathing medium. Lysophosphatidic acid, therefore, may not be an intracellular second messenger involved in platelet aggregation by thrombin.  相似文献   

5.
Isolated human blood platelets, loaded with the pH-sensitive fluorescence dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein show cytoplasmic alkalinization upon stimulation with thrombin but acidification with ADP stimulation. In both cases a Na+/H+ exchange is activated. This can be revealed by the sensitivity of the induced pH changes to amiloride and to 5-N-(3-aminophenyl)amiloride (APA), known inhibitors of the Na+/H+ exchanger, and by a dependence on sodium in the external medium. ADP-induced platelet aggregation is not affected by omission of sodium from the external medium. Furthermore, aggregation is barely inhibited (less than 10%) by amiloride or APA at concentrations up to 50 microM while the Ki values in affecting the Na+/H+ exchange are 5.9 and 1.6 microM for amiloride and APA, respectively. Platelet aggregation is inhibited by amiloride or APA at concentrations higher than 50 microM, but this inhibition is apparently due to a secondary effect of the agents. It is concluded that platelet aggregation induced by ADP is not dependent on activation of Na+/H+ exchange.  相似文献   

6.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

7.
We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release, raised cytoplasmic free calcium level and phosphorylation of platelet proteins was examined in platelet-rich plasma and washed platelet suspension. In contrast to A23187 and thrombin, the platelet activation induced by thapsigargin developed slowly, with maximal response obtained after 2-3 min. Both the thapsigargin- and the A23187-induced serotonin releases were synergistically increased by TPA. Studies of the phosphorylation of platelet proteins revealed that thapsigargin and A23187 equally well induced a selective phosphorylation of two proteins with apparent molecular masses of 20 kDa and 47 kDa. These proteins, which are substrates of myosin light-chain kinase and protein kinase C respectively, are known to be involved in platelet activation. The thapsigargin-induced platelet aggregation and serotonin release was completely inhibited by class I (nimodipine), class II (verapamil) and class III (diltiazem) calcium-channel blockers. The inhibitory activity of nimodipine was abolished by the corresponding 1,4-dihydropyridine calcium-channel agonist, BAY K 8644. These results shows that the thapsigargin-induced platelet activation is mediated by an increase in the cytoplasmic free calcium level, presumably obtained by stimulation of the passive calcium transport through specific channels. These thapsigargin-sensitive channels should predominantly be located in the membranes of intracellular calcium stores rather than in the plasma membrane, because removal of extracellular calcium by EGTA had only an insignificant effect on the thapsigargin-induced rise in cytoplasmic free calcium level.  相似文献   

8.
Phenothiazines at high concentrations inhibit platelet aggregation and the secretion of granule contents. In this study we have evaluated the influence of stelazine on platelet function at low concentrations. Stelazine alone had no influence on resting calcium levels in platelets but facilitated agonist-induced elevation of cytosolic calcium. Platelets combined with low concentrations of stelazine (10 microM) and stimulated with subthreshold concentrations of thrombin (0.05 mu/ml) aggregated irreversibly and released significant quantities of ATP. Results of these studies suggest a new role for the calmodulin antagonist stelazine in platelet activation.  相似文献   

9.
Concentrations (1 to 20 microM) of 1-oleoyl-lysophosphatidic acid which alone do not affect platelet metabolism of arachidonic acid, do augment the effects of suboptimal concentrations of thrombin on the formation of [14C]phosphatidic acid and the production of [14C]arachidonate metabolites from platelets prelabeled with [14C]arachidonate. The effect on [14C]phosphatidate occurs with concentrations of thrombin (0.1 unit/ml) which are lower than those (0.2 unit/ml) needed to observe the effects on [14C]arachidonate metabolites. The effect of 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) on the formation of phosphatidic acid temporally precedes the production of arachidonate metabolites consistent with a sequential activation of phosphatidylinositol-specific phospholipase C and phospholipase A2 activities. Preincubation of platelets with (32P)orthophosphate shows that the phosphatidic acid formed by 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) is derived from phosphatidylinositol. The Ca2+-ionophoretic properties of lysophosphatidic acid might explain the accumulation of phosphatidic acid since Ca2+ prevents the conversion of phosphatidic acid to phosphatidylinositol. That effect of lysophosphatidic acid is inhibited by prostacyclin, possibly through a cyclic-AMP-mediated effect on calcium homeostasis.  相似文献   

10.
The effects of the antimicrotubular drugs colchicine and vinblastine on the blood platelet release reaction were studied by measuring release of 14C-5-hydroxytryptamine (14C-5-HT, release I) and β-glucuronidase (release II) from gel-filtered human platelets. β-glucuronidase release induced by thrombin was significantly inhibited by colchicine (0.01-1 mM) or vinblastine (0.05–0.1 mM). Release of 14C-5-HT, however, was unaffected at low concentrations of colchicine and only slightly inhibited at higher concentrations. Inhibition of β-glucuronidase release depended on colchicine or vinblastine concentrations and decreased with longer time intervals (1′, 5′, 20′) after thrombin stimulation. Levels of the cytoplasmic enzyme, lactic acid dehydrogenase, in supernatants of colchicine treated platelets were not significantly different from controls. Colchicine also inhibited β-glucuronidse release, but not 14C-5-HT release, induced by trypsin and sodium arachidonate. Binding of 14C-colchicine by platelets was measured and it was found that platelet aggregation and release of 5-HT induced by adenosine diphosphate, epinephrine and collagen proceeded without any alteration in colchicine binding. However, significant increases in the rate and degree of colchicine binding were observed when platelets were stimulated by thrombin, trypsin and arachidonic acid which induced aggregation, release of both 5-HT and β-glucuronidase. The results suggest that an alteration in platelet microtubules is correlated with the physiologic response resulting in release II and that the cellular mechanisms effecting release I and II by platelets differ qualitatively in that the microtubules may facilitate release II.  相似文献   

11.
Inhibitors of the endoplasmic reticulum Ca(2+)-ATPase like thapsigargin (TG) and 2,5-di (tert-butyl)-1,4-benzohydroquinone (tBuBHQ) cause increases in cytosolic calcium in intact human platelets resulting from prevention of reuptake. A maximal concentration of TG (0.2 microM) mobilized 100% of sequestered Ca2+ compared to the action of a receptor agonist like thrombin (0.1 U/ml). A maximal dose of tBuBHQ (50 microM) stimulated release of about 40% of intracellular calcium compared to thrombin and TG. The reduced ability of tBuBHQ to release calcium can be explained with an inhibitory effect on the cyclooxygenase pathway (Ki approximately 7 microM). Therefore tBuBHQ is not able to cause platelet aggregation compared to TG. In the presence of a cyclooxygenase inhibitor or a thromboxane A2 receptor antagonist the action of TG is identical to that observed with tBuBHQ. Generally, inhibition of calcium sequestration does not automatically result in platelet activation. In contrast to a receptor mediated activation Ca(2+)-ATPase inhibitors require the self-amplification mechanism of endogenously formed thromboxane A2 to cause a similar response. We conclude that the calcium store sensitive to Ca(2+)-ATPase inhibitors is a subset of the receptor sensitive calcium pool.  相似文献   

12.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

13.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4 · 10?6 M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4 · 10?5 M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8 · 10?4 to 5 · 10?3 M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregation agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

14.
Tetradecanoylphorbol acetate (TPA) activates primarily only the protein kinase C pathway not the calcium ion-dependent pathway in platelets. The net effect of this split activation is that only the pseudopodal cytoskeleton assembles, not the contractile cytoskeleton needed for rapid secretion. In this study, platelets were first activated with TPA, then activated secondarily with either thrombin or arachidonate and the subsequent dense body secretion, calcium-ion mobilization, protein phosphorylation and cytoskeletal assembly compared to these same processes in control platelets activated solely with either thrombin or arachidonate. Secretion was reduced as the length of time between the primary and secondary activation was increased; but at a 2-3 min interval, where the activation by TPA was essentially complete, the reduction in the total radiolabeled serotonin secreted was small. Furthermore, nearly normal cytosolic calcium-ion increases, phosphorylation of myosin light chain and contractile cytoskeletal development were induced by thrombin or arachidonate after this interval. Prior treatment of the platelets with 100 microM acetylsalicylate to block the cyclooxygenase-dependent pathway caused minor reduction in dense-body secretion induced by TPA or thrombin or the combination of both, but otherwise the relative results were comparable to the untreated platelets. Therefore, short-term prior activation of gel-filtered platelets with TPA, even at concentrations in excess of 100-times that required to saturate protein kinase C, does not prevent normal activation of the calcium ion dependent processes through either the cyclooxygenase-dependent or -independent pathway. Longer-term preincubations with TPA differentially inhibit the secretion response induced by thrombin and arachidonate.  相似文献   

15.
The effects of sphingosine, the newly described inhibitor of the enzyme protein kinase C, on human platelet activation, were studied in order to gain further information on the role of protein kinase in platelet responses. Concentrations of the drug (5-20 microM) which had little effect on protein kinase C activation as measured by the phosphorylation of the 45 kDa and 20 kDa protein substrates induced by phorbol 12-myristate 13-acetate (PMA) and thrombin, strongly inhibited platelet aggregation induced by these agonists, as well as aggregation induced by ADP and ionomycin, which caused no detectable protein kinase C activation or 5-hydroxy[14C]tryptamine[( 14C]5HT) secretion. At approx. 10-fold higher concentrations (150-200 microM), sphingosine had significant inhibitory effects on PMA and thrombin-induced 45 kDa and 20 kDa protein phosphorylation. However, at these high concentrations, the drug caused extensive membrane damage/leakiness as suggested by the substantial release of [14C]5HT and [3H]adenine from pre-loaded platelets (50-70% release of both markers), and the total quenching of quin2 fluorescence by Mn2+ in the presence of the drug. Due to the increased membrane leakiness in the presence of the drug, an apparent potentiation of agonist-induced intracellular Ca2+ elevations in quin2-loaded platelets, as well as an increase in quin2 fluorescence with the drug alone (more than 50 microM) were also observed. Despite this, however, thrombin-induced [3H]arachidonate release was severely reduced in the presence of sphingosine, underlining the inhibitory effects at the membrane level. It is concluded that the weak, if any, inhibitory effects on protein kinase C at concentrations not affecting membrane integrity, as well as the inhibitory effects of sphingosine on platelet aggregation, make it an unsuitable compound as a tool for studies on platelet stimulus-response coupling.  相似文献   

16.
We have obtained evidence that selective inhibition of high affinity thrombin-binding sites located in the amino-terminal domain of the membrane glycoprotein (GP) Ib alpha results in impaired platelet activation, as shown by abrogation or reduction of the following responses induced in normal platelets by exposure to less than 1 nM alpha-thrombin: (i) increase in intracellular ionized calcium concentration ([Ca2+]i), (ii) release of dense granule content, (iii) binding of fibrinogen, (iv) aggregation. An anti-GP Ib monoclonal antibody, LJ-Ib 10, which does not inhibit von Willebrand factor binding to platelets, obliterated the high affinity alpha-thrombin-binding sites on normal platelets. Isotherms of alpha-thrombin binding to normal platelets treated with saturating amounts of the antibody were virtually identical to those obtained with platelets from a patient with classical Bernard-Soulier syndrome. In parallel with decreased binding of the agonist, this antibody caused 50% inhibition of the maximal extent of platelet aggregation and 90% inhibition of ATP release induced by 0.3 nM alpha-thrombin. By inhibiting alpha-thrombin binding to GP Ib, the antibody prevented the activation of platelets exposed to low concentrations of the agonist, as demonstrated by abrogation of the increase in intraplatelet ionized calcium concentration induced in control platelets by 0.18 nM alpha-thrombin; under these conditions, fibrinogen binding was inhibited by 84%. Therefore, there is a correlation between occupancy of the high affinity sites for alpha-thrombin on GP Ib alpha and platelet activation, secretion, and aggregation, suggesting that GP Ib alpha is part of an alpha-thrombin receptor relevant for platelet function.  相似文献   

17.
The low affinity receptor for immunoglobulin G, FcgammaRIIA, is expressed in human platelets, mediates heparin-induced thrombocytopenia and participates to platelet activation induced by von Willebrand factor. In this work, we found that stimulation of platelets with agonists acting on G-protein-coupled receptors resulted in the tyrosine phosphorylation of FcgammaRIIA, through a mechanism involving a Src kinase. Treatment of platelets with the blocking monoclonal antibody IV.3 against FcgammaRIIA, but not with control IgG, inhibited platelet aggregation induced by TRAP1, TRAP4, the thromboxane analogue U46619, and low concentrations of thrombin. By contrast, platelet aggregation induced by high doses of thrombin was unaffected by blockade of FcgammaRIIA. We also found that the anti-FcgammaRIIA monoclonal antibody IV.3 inhibited pleckstrin phosphorylation and calcium mobilization induced by low, but not high, concentrations of thrombin. In addition, thrombin- or U46619-induced tyrosine phosphorylation of several substrates typically involved in FcgammaRIIA-mediated signalling, such as Syk and PLCgamma2, was clearly reduced by incubation with anti-FcgammaRIIA antibody IV.3. Upon stimulation with thrombin, FcgammaRIIA relocated in lipid rafts, and thrombin-induced tyrosine phosphorylation of FcgammaRIIA occurred within these membrane domains. Controlled disruption of lipid rafts by depleting membrane cholesterol prevented tyrosine phosphorylation of FcgammaRIIA and impaired platelet aggregation induced by U46619 or by low, but not high, concentrations of thrombin. These results indicate that FcgammaRIIA can be activated in human platelets downstream G-protein-coupled receptors and suggest a novel general mechanism for the reinforcement of platelet activation induced by low concentrations of agonists.  相似文献   

18.
Thrombin-induced calcium movements in platelet activation   总被引:5,自引:0,他引:5  
The thrombin-induced Ca2+ fluxes and their coupling to platelet aggregation of the human platelet were studied using quin2 as a measure of the cytoplasmic Ca2+ concentration [( Ca2+]cyt) and chlorotetracycline (CTC) as a measure of internally sequestered Ca2+. Evidence is given that the CTC fluorescence change is proportional to the free internal Ca2+ concentration in the dense tubular lumen. The intracellular quin2 concentration was 1 mM and analysis showed that it did not perturb the processes reported herein. The value of [Ca2+]cyt at rest and during thrombin activation was analyzed in terms of Ca2+ influx, Ca2+ release, Ca2+ sequestration, and Ca2+ extrusion. Influx was distinguished from internal release by removing extracellular Ca2+ 1 min before thrombin activation. In the presence of 2 mM external Ca2+, the thrombin-induced Ca2+ influx accounts for most of the increase in [Ca2+]cyt (over 80%). Thrombin-induced Ca2+ influx and release have somewhat different EC50 values (0.17 U/ml vs. 0.35 U/ml). The contribution of influx can be inhibited by verapamil, bepridil and Cd2+ (IC50 values of 19 microM, 2 microM and 50 microM). The influx results were analyzed in terms of a thrombin-activated channel. Indomethacin pretreatment experiments suggest that activation of the arachidonic pathway accounts for approx. 50% of the influx-related [Ca2+]cyt elevation. Elevation of [Ca2+]cyt by intracellular release is not inhibited by verapamil or Cd2+ but is inhibited by bepridil with a high IC50 (25 microM). It is only 15-20% inhibited by indomethacin and is thus not dependent on thromboxane A2 formation. The release reaction does not require Ca2+ influx. The rate of thrombin-activated platelet aggregation is shown to have an approximately fourth-power dependence on [Ca2+]cyt with an apparent Km of 0.4 microM. Comparisons of aggregation rates of the partially thrombin-activated vs. fully thrombin-activated, partially verapamil-inhibited conditions suggest that this dependence on [Ca2+]cyt is the major determinant of the aggregation behavior. Analysis shows that calcium influx is the major pathway for elevating [Ca2+]cyt by thrombin when physiological concentrations of external Ca2+ are present.  相似文献   

19.
Zinc ions at micromolar levels exhibited a significant inhibitory activity toward platelet activating factor (AGEPC)- and thrombin-induced serotonin release from washed rabbit platelets. In the ranges from 25 to 30 microM and 10 to 50 microM, respectively, zinc essentially prevented any serotonin release from 1.25 X 10(8) cells/microliter by 1 X 10(-10) M AGEPC and by 0.2 unit thrombin/ml. This inhibition by zinc ions, in micromolar range, occurred in the presence of 1.0 mM Ca2+. The amount of zinc needed for inhibition was inversely proportional to the amount of AGEPC present and further zinc must be added prior to or at the same time as the AGEPC to be effective. Introduction of zinc ions after the AGEPC essentially abolished the inhibitory properties of this divalent cation. Other cations such as Cu2+, La3+, Cd2+, and Mg2+ were ineffective as inhibitors at concentrations where zinc showed its maximal effects. Under conditions similar to those noted above, aggregation induced by AGEPC was blocked only to the extent of 25% of a control. No inhibitory action by zinc on thrombin-induced aggregation was noted. It is apparent that zinc ions influence a site(s) on the rabbit platelet of considerable importance to the activation (or signaling) process by AGEPC and thrombin in these cells, as expressed by serotonin release. Zinc should provide a suitable probe to explore the mechanism of action of these agonists in their interaction with sensitive cells and to define in more specific biochemical terms the putative receptor for these molecules.  相似文献   

20.
Lee HS 《Bioresource technology》2006,97(12):1372-1376
The antiplatelet activities of Curcuma longa L. rhizome-derived materials were measured using a platelet aggregometer and compared with those of aspirin as antiplatelet agent. The active constituent from the rhizome of Curcuma longa L. was isolated and characterized as ar-turmerone by various spectral analyses. At 50% inhibitory concentration (IC50) value, ar-turmerone was effective in inhibiting platelet aggregation induced by collagen (IC50, 14.4 microM) and arachidonic acid (IC50, 43.6 microM). However, ar-turmerone had no effect on platelet activating factor or thrombin induced platelet aggregation. In comparison, ar-turmerone was significantly more potent platelet inhibitor than aspirin against platelet aggregation induced by collagen. These results suggested that ar-turmerone could be useful as a lead compound for inhibiting platelet aggregation induced by collagen and arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号