首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of sedimentation properties of the nucleoid (chromatin) of HeLa cells with radio- and thermostable mode of DNA synthesis induced by 5-fluorodeoxyuridine (FUdR). After the incubation of HeLa cells with FUdR (10(-6) M, 6 h or 24 h) the rate of nucleoid sedimentation was shown to rise by 40 and 25%, respectively. Maximum relaxation of the nucleoid was observed under 5 mg/ml ethidium bromide concentration in sucrose gradients. After the incubation with FUdR the nucleoid relaxes to a lesser extent, and after irradiation its response to ethidium bromide in various concentrations was similar to that of intact nucleoid, and by this property the "FUdR nucleoid" differs essentially from the irradiated "normal nucleoid". A model of chromatin structure of cells exposed to FUdR is proposed, based on the transformation of large domains in small ones, for the explanation of radioresistant DNA synthesis.  相似文献   

2.
A technique for the detection of DNA damage induced by radiation insult has been developed. Cells were lysed with a buffer containing 2 M sodium chloride to release the DNA in a supercoiled form, the nucleoid. These were stained with the DNA intercalating dye, ethidium bromide, and exposed to laser light within a flow cytometer. Scattered and fluorescent light was analyzed from the laser/nucleoid interaction following irradiation of viable cells with gamma rays. The addition of ethidium bromide to prepared nucleoids caused a reduction in scattered light due to condensation of the nucleoid. Irradiation of cells prior to nucleoid production and ethidium bromide treatment restricted this condensation and produced a dose-dependent increase in laser scatter. Nucleoids derived from human lymphocytes showed enhanced light scatter from 5 Gy, compared to Chinese hamster ovary (CHO) fibroblasts where doses above 10 Gy were required. Up to 30 Gy CHO nucleoids showed a dose-dependent reduction in the ethidium bromide fluorescence. This technique allows detection of altered light scattering and fluorescent behavior of nucleoids after cellular irradiation; these may be related to structural changes within the nucleus induced by the radiation. The use of flow cytometry compared to other methods allows a rapid analysis of nuclear damage within individual cells.  相似文献   

3.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

4.
Adaptive response of the chicken embryo to low doses of x-irradiation   总被引:3,自引:0,他引:3  
Chicken embryos were x-irradiated in ovo with 5–30 cGy (=priming dose) at the 13th–15th day of development. After 3–48 h, brain- and liver-cell suspensions were x-irradiated in vitro with (challenge) doses of 4–32 Gy. Significantly less radiation damage was observed when the radiation response was measured by scheduled DNA synthesis, nucleoid sedimentation and viscosity of alkaline cell lysates 12–36 h after the priming exposure. In vivo, pre-irradiation with 10 cGy enhanced regeneration as evidenced by the DNA content of chicken embryo brain and liver 24 h following a challenge dose of 4 Gy. From nucleoid sedimentation analyses in brain and liver cells immediately after irradiation with 16 Gy and after a 30-min repair period in the presence of aphidicolin, dideoxythymidine and 3-aminobenzamide or in the absence of these DNA repair inhibitors, it is concluded that a reduction of the initial radiation damage is the dominant mechanism of the radio-adaptive response of the chicken embryo. Sedimentation of nucleoids from ethidium bromide (EB) (0.75–400 µg/ml)-treated cells suggests a higher tendency of radio-adapted cells to undergo positive DNA supercoiling in the presence of high EB concentrations.  相似文献   

5.
Ultrastructural changes in mammalian cells treated with ethidium bromide (EB) occur predominantly in the mitochondria. One hour after addition of 10 μg/ml of EB, an accumulation of electron-dense materials occurred in many mitochondria. After 4 h of treatment, mitochondrial complexes consisting of helically arranged fibers 30–260 Å in thickness were observed. [3H]TdR autoradiography demonstrated the presence of DNA in the complexes. EB-treated cells were also studied using energy dispersive X-ray analysis techniques. Mitochondria containing dense complexes were significantly different, microchemically, from mitochondria devoid of the structure, and contained analyzable amounts of bromine. These observations suggest that EB treatment of cells induces the formation of electron-dense mitochondrial complexes containing EB, mitochondrial DNA, and protein, and the complexes are associated with an inhibition of normal mitochondrial development.  相似文献   

6.
Ethidium bromide was used to determine the success of cDNA synthesis reactions. Since ethidium bromide in agarose can be used to quantitate RNA and DNA, conditions under which the greater fluorescence of double-stranded DNA (dsDNA) is utilized were devised to assay dsDNA synthesis from mRNA. Ethidium bromide at 5 micrograms/ml in agarose allowed quantitative detection of cDNA in the range of 0.03 to 0.0015 microgram. Sodium dodecyl sulfate had an adverse effect on the measurement of cDNA. Subsequent cDNA analysis by alkaline gel electrophoresis and staining in 5 micrograms/ml ethidium bromide allowed accurate and rapid sizing of cDNA and required only 0.1-0.05 microgram cDNA.  相似文献   

7.
Novobiocin, an inhibitor of gyrase-induced DNA supercoiling and DNA replication in prokaryotes, inhibited the incorporation of DNA precursors into DNA in both intact and permeable Chinese hamster ovary cells; much higher concentrations were required for permeable cells, in which no new replicons were initiated. Nucleoids were prepared from cells that were incubated for 60 min with 200 micrograms/ml novobiocin, made permeable, and incubated with 0--50 micrograms/ml ethidium bromide. Sedimentation of the nucleoids in neutral sucrose gradients suggested that the number of supercoils in the average nucleoid had been reduced by prior incubation with novobiocin. In intact cells, novobiocin is required inside the cell for continued inhibition of DNA synthesis, suggesting that it does not act directly on the DNA. Alkaline sucrose gradient profiles of DNA synthesized in the presence of novobiocin in intact cells indicated that the drug inhibited replicon initiation while having little if any effect on chain elongation. These data are consistent with the idea that an activity similar to the bacterial gyrase generates supercoils in mammalian DNA and produces the proper conformation for the initiation of DNA replication.  相似文献   

8.
DNA topology in histone- and protamine-depleted nuclei (nucleoids) from somatic cells, sperm, and spermatogenic cells was studied to determine if the superhelical configuration of DNA looped domains is altered during spermatogenesis. The expansion and contraction of nucleoid DNA was measured with a fluorescence microscope following exposure of nucleoids to different concentrations of ethidium bromide (EB). Nucleoids from Xenopus laevis erythrocytes, primary spermatocytes, and round spermatids, and from Rana catesbeiana sperm all exhibited a biphasic change (condensed-relaxed-condensed) in size as a function of exposure to increasing concentrations (0.5–100 g/ml) of EB, indicating that they contain negatively supercoiled DNA. In contrast, DNA in sperm nucleoids from Xenopus laevis and Bufo fowleri was relaxed and expanded at low (0.5–6 g/ml) EB concentrations, but became gradually condensed as the EB concentration was increased (6–100 g/ml). Nucleoids prepared from all cell types retained the general shape of the nucleus regardless of the superhelical configuration of the nucleoid DNA. Sperm nucleoid DNA condensed by 100 g/ml EB was relaxed by exposure to UV light, DNase I, proteinase K, or 4 M urea, but not by RNase A or 10 mM dithiothreitol. These results demonstrate that the DNA in sperm nucleoids is constrained in domains of supercoiling by nonbasic nuclear proteins. Negatively supercoiled DNA is present in nucleoids from cells with a full complement of histones, including Rana sperm, but not in nucleoids from Xenopus and Bufo sperm in which histones are replaced by intermediate-type protamines. Histone replacement in these species, therefore, is accompanied by unfolding of nucleosomal DNA and active removal of the negative supercoils. Results presented also suggest an important role for the nonbasic nuclear proteins of sperm in the morphogenesis of the nucleus and the arrangement of DNA.  相似文献   

9.
During spermiogenesis, the DNA-nucleoprotein complex undergoes alterations that are reflected in a decreasing capacity for binding DNA-specific dyes, such as ethidium bromide (EB). Human spermatozoa with a low or high capacity for EB binding were depleted of RNA and most nuclear proteins by exposure to RNAse, EDTA and trypsin, with and without additional high salt buffer (HSB) treatment. When treated with RNAse, EDTA and trypsin only, the haploid DNA fluorescence value (calculated from the diploid value of the standard cell population) was found at EB concentrations of 6.5 to 12.5 micrograms/mL. At these EB concentrations, a significantly lower fluorescence was found in the material also treated with HSB, probably reflecting an unwinding of the highly negatively supercoiled DNA loops that are induced by HSB treatment. Maximal fluorescence was not found until a concentration of 50 micrograms EB/mL. This may be due to an overwinding of the DNA by the positive supercoiling caused by EB. The significant difference in EB uptake initially found between the two groups whose spermatozoa showed low and high capacities for EB binding disappeared after removal of the nucleoproteins, suggesting that this compartment of the nucleoprotein-DNA complex is responsible for the different uptakes of EB.  相似文献   

10.
Capillary electrophoresis was employed in this study to monitor 60Co-γ-ray-induced damage to a 1 kb DNA ladder which consists of restriction fragments ranging from 75 to 12 000 bp. DNA samples (0.5 mg/ml) were exposed to 0–60 Gy of γ-radiation in the presence and absence of 110 μmol/l ethidium bromide (EB). The analysis showed peak broadening without significant changes in the size distribution of irradiated fragments. Radiation-induced conformational changes may account for this peak broadening. EB addition caused small increases in the retention times of DNA fragments without affecting the overall DNA damage. This indicates that the presence of intercalated EB during radiation will not stabilize the DNA against 60Co-γ ray-induced damage.  相似文献   

11.
K V Sal'nikov 《Tsitologiia》1986,28(6):615-622
Stable mutants resistant to ethidium bromide in concentrations of 1 and 3 micrograms/ml have been selected in a single step in L cells. The frequency of spontaneously occurring ethidium bromide resistant clones after the exposure to 1 microgram/ml of the drug has been established as 5.10(-5). Resistant variants were induced following treatment with mutagen N-methyl-N-nitro-N-nitrosoguanidine. The resistant clones were shown to be resistant to higher concentration of the agent then which was used for selection. In multistep selection, a number of clones resistant to ethidium bromide in concentration up to 50 micrograms/ml was obtained. The alteration in the permeability of plasma membrane to the drug is the clue mechanism of the resistance.  相似文献   

12.
Ethidium Bromide-Resistant Mutant of Bacillus subtilis   总被引:6,自引:1,他引:5       下载免费PDF全文
An ethidium bromide-resistant mutant (EB8) derived from a Marburg strain of Bacillus subtilis was found to be conditionally resistant to 10 mug of ethidium bromide per ml. Expression of resistance is complete only during vegetative growth at incubation temperatures above 30 C in complex medium or minimal medium supplemented with Casamino Acids. Strain EB8 is cross-resistant to acriflavine and proflavine. The ethidium bromide resistance marker is co-transduced with hisA1 at a frequency of 6% and is located to the right of hisA1 on the B. subtilis chromosome as it is usually represented on the map. Incorporation of [5-(3)H] uridine by strain EB8 showed that ribonucleic acid synthesis in both whole cells and protoplasts is ethidium bromide-resistant.  相似文献   

13.
A membrane-DNA complex was isolated by centrifugation of sheared lysate of isolated mitochondria in 20-60% sucrose step solution. Analyses using Hoechst 33258/CsCl density gradient centrifugation and restriction endonuclease treatment showed that DNA in the membrane-DNA complex was AT-rich compared with total mitochondrial DNA (mt DNA) and contained Eco RI fragments of E-4, 5 and 8, which were localized on the right hand of Physarum mitochondrial genome. Phenethyl alcohol (PEA) and ethidium bromide (EB) could disrupt the membrane-DNA complex to release DNA fragments from their complex in vitro. Addition of 0.5% or more PEA, which released 80-90% of the DNA from the membrane-DNA complex in vitro, inhibited not only mitochondrial nuclear division but also mitochondrial division in vivo. EB treatment at more than 1 mg/ml disrupted the membrane-DNA complex in vitro to release 77% of the total DNA in the complex. Addition of 10 micrograms/ml EB induced unequal mitochondrial nuclear division in the microplasmodia, e.g., a dividing dumbbell-shaped mitochondrion had the mt-nucleus in one side and as a result formed then one nucleated and one enucleated mitochondrion. From the EB-pretreated mitochondria, a lesser amount of the membrane-DNA complex was isolated than from the control. These findings mean than the unequal mt-nuclear division is due to dissociation of DNA and the membrane system in the membrane-DNA complex. They strongly suggested that the DNA region (E-4, 5 and 8), where the mitochondrial nucleus is associated with the mitochondrial membrane system plays an important role in mitochondrial nuclear division.  相似文献   

14.
The respiration of subline Leb-25 cells, resistant to ethidium bromide (EB, 25 g/ml), is 2.5 times slower than the respiration of parental L cells of mouse fibroblasts. The EB resistant cells have a normal level of ATP. Disturbances of mitochondrial functions can be observed such as a defect of the succinate dehydrogenase complex and the uncoupling of respiration and oxidative phosphorylation in mitochondria of Leb-25 cells.  相似文献   

15.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

16.
Capillary electrophoresis (CE) was used to monitor the laser-induced conversion of supercoiled pKOL8UV5 plasmid DNA into nicked conformers. The plasmid samples (0.1 mg/ml) were incubated in the absence or presence of 110 μmol/l ethidium bromide (EB) and then exposed to 110 J of argon laser radiation (488 nm). The nicked, open circular conformers were separated from the supercoiled DNA by a 15% increase in retention time. Approximately 90% of the control DNA was in the supercoiled form. Laser radiation in the presence of EB caused complete conversion of the supercoiled plasmid DNA into nicked conformers. Laser-induced fluorescence CE (LIF-CE) was about 100-fold more sensitive than UV-CE in the detection of these conformers. Agarose gel electrophoresis confirmed these findings and showed the presence of the nicked plasmid conformers. Based on these comparisons, CE is an efficient analytical tool for the identification of laser-induced conformational changes in plasmid DNA.  相似文献   

17.
Summary The mitochondrial nucleoid is a compact structure composed of DNA and protein. By fluorescence microscopy, decondensation of the nucleoids was observed when yeast and tobacco mitochondria were osmotically lysed and subjected to an electric field. Structures stained with ethidium bromide were seen moving toward either the anode or the cathode. Since the movement of deproteinized DNA is toward the anode, the structures moving toward the cathode represent DNA-protein complexes with a net positive charge. Nucleoid decondensation and unfolding of the DNA probably resulted from the removal of weakly bound proteins; yet high-affinity basic proteins were evidently retained yielding cationic DNA-protein structures. Some of the positively charged structures were observed to break, presumably at single-stranded DNA regions, releasing negatively charged particles. The DNA-protein structures were complex branching forms larger than the unit genome, suggesting that multigenomic, concatemeric DNA is present within the mitochondria.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EtBr ethidium bromide - HMG high-mobility group - mt-genome mitochondrial genome - mt-nucleoid mitochondrial nucleoid - PFGE pulsed-field gel electrophoresis - pt-nucleoid plastid nucleoid - ssDNA single-stranded DNA  相似文献   

18.
T Araki  M Yamada 《Histochemistry》1985,83(4):299-301
A fluorometric method for the determination of the amount of ethidium bromide (EB) bound to DNA in situ in cell nuclei is discussed. Even when the EB content was very small, the molar ratio of DNA-phosphorus (DNA-p) to dye (P/D ratio) could be estimated by measuring the lifetime of the transient fluorescence of the EB-DNA complex as a function of the P/D ratio. To examine the relationship between the fluorescence intensity, lifetime, and P/D ratio, polyacrylamide gel film containing 4.7 mM DNA-p was used as a model DNA tissue, and its fluorescence was measured using a nanosecond microfluorometer. The fluorescence intensity showed a maximum at P/D = 6. The fluorescence lifetime increased with the P/D ratio, and this was accompanied by a proportional increase in the quantum efficiency. Thus, the lifetime value was an effective parameter for the determination of the P/D ratio in situ in tissue. When this approach was applied to tissue sections of mouse liver treated with solutions of EB at concentrations of 10 and 50 micrograms/ml, the fluorescence lifetimes on cell nuclei were 18.9 and 17.4 ns with P/D ratios of 20 and 12, respectively, as based on the model-tissue experiments. When the P/D ratio was 20, the concentration of EB in the nucleus was approximately 1.5 mM, i.e., 60 times higher than that in the staining solution.  相似文献   

19.
The method of ultracentrifugation of a nucleoid in a neutral sucrose gradient in the presence of ethidium bromide was used to detect gamma radiation-induced DNA breaks and their resynthesis in human HEp-2 cells and fibroblasts taken from a skin biopsy of patients with homocystinuria (HCN). In HEp-2 cells pretreated with interferon the nucleoid sedimentation rate after gamma irradiation did not differ from that in intact cells, that is, interferon exerted its protective effect whereas in HCN cells interferon was ineffective. After incubation with interferon, the resynthesis of the induced breaks was enhanced in these cells as well.  相似文献   

20.
Y Akine  K Nomura  K Iwasaki 《Human cell》1989,2(4):411-415
Radiation damage of DNA in HeLa cells was measured according to a method reported by Milner, et al. Cells were suspended in lysis buffer to obtain nucleoid. They were stained with ethidium bromide immediately before the measurement by using a system of flow cytometry. The mean position of channels for forward scatters increased at first and decreased thereafter as the concentration of ethidium bromide increased. The biphasic response disappeared with irradiation given to the cells. When the concentration of ethidium bromide was constant, the mean position of channels for forward scatters increased as the dose of irradiation increased. It might be possible to use the method in predicting the response of a tumor to irradiation in the clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号