首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies demonstrate that canine liver synthesizes a TGH activated by C-I but not by C-II. This TGH has properties similar to lipoprotein lipase C-I isolated from postheparin plasma of human subjects, but differs from a previously reported liver triglyceride-lipase or protamine insensitive-lipase in its sensitivity to NaCl and protamine sulfate, as well as in its requirement for a serum cofactor, C-I. These data suggest the possiblity that, in dogs, liver is a source of plasma LPLC-I.  相似文献   

2.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

3.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

4.
Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.  相似文献   

5.
The effect of heparin injection (50 IU/kg body weight) on plasma lipoprotein concentration and composition as well as on platelet aggregation and 14C-serotonin release was studied in normal fasted subjects, normal subjects 4 hr after a fatty meal (postprandial state), and in primary type V hyperlipoproteinemic patients. Heparin injection resulted in a reduction in plasma triglyceride, cholesterol, and phospholipids as well as in the inhibition of platelet function in either the presence or the absence of the plasma environment. Heparin injection resulted in catabolism of triglyceride-rich lipoproteins and increment of cholesterol and protein in the high-density lipoprotein (HDL) density range. In fasted normal subjects, very-low-density lipoprotein (VLDL) was reduced by 50%; in the postprandial state, both VLDL and chylomicrons decreased similarly; but in phenotype V hyperlipoproteinemia, only chylomicrons (but not VLDL) degraded. Heparin injection also caused increased electrophoretic mobility of plasma lipoprotein. Upon incubation of similar lipoprotein concentration, derived before and after heparin injection, with normal washed platelets, we found that in all the groups all the lipoproteins (except HDL) derived after heparin injection caused reduction in platelet activity. High-density lipoproteins derived after heparin injection, especially from type V hyperlipoproteinemic subjects, increased normal platelet activity, and this probably represents an effect of chylomicron remnant particles in the HDL density range. Our study thus demonstrates altered composition and concentration of plasma lipoprotein after heparin injection and may suggest the appearance of remnant particles with atherogenic properties.  相似文献   

6.
Studies were undertaken to investigate the mechanism of the marked accumulation of an apoE-poor very low density lipoprotein (VLDL) subfraction in untreated Type IV and IIb hypertriglyceridemic subjects. Heparin-Sepharose chromatography was used to separate large VLDL (Sf 60-400) from fasted subjects, into an apoE-poor, unbound fraction and an apoE-rich, bound fraction. As a percent of total VLDL protein, the apoE-poor fraction comprised 40 +/- 4% of total VLDL in hypertriglyceridemic subjects versus 25% in normal subjects. Compared to the apoE-rich, bound fraction, this apoE-poor material was found to have a 5-fold lower ratio of apoE to apoC (0.20 +/- 0.06 vs 0.91 +/- 0.18, P less than 0.005), but a 1.5-fold higher ratio of triglyceride to protein (11.41 +/- 0.85 vs 7.97 +/- 0.77, P less than 0.01). In addition, the apoE-poor fraction was found to be enriched 2-fold in apoB-48 (10.30 +/- 2.41% vs 5.73 +/- 1.59% of total apoB, P less than 0.005) compared to the apoE-rich fraction, suggesting that the apoE-poor fraction contains more chylomicron remnants. The amount of this apoE-poor VLDL was markedly reduced following a reduction in VLDL triglyceride levels (a decrease from 40 +/- 4% to 21 +/- 2% of VLDL protein following a 50% reduction in VLDL triglyceride levels). The large VLDL from Type I, III, and V hyperlipoproteinemic subjects subfractionated using heparin-Sepharose showed an equal distribution of apoE between the two fractions in contrast with the Type IV and IIb subjects. The separation of VLDL from Type I, III, and V subjects using heparin-Sepharose involves a mechanism other than apoE binding. Separation in the latter likely results from apoB-100 binding to heparin, as opposed to apoE binding of VLDL from Type IV and IIb subjects.  相似文献   

7.
Previous studies have shown that very low density lipoproteins (VLDL) from patients with Tangier disease are less effective as a substrate for human milk lipoprotein lipase (LPL) than VLDL from normal controls as assessed by measuring the first order rate constant (k1) of triglyceride hydrolysis. Tangier VLDL also has a higher content of apolipoprotein (apo) A-II than normal VLDL. To explore the possible relationship between the relatively high concentration of apoA-II in VLDL and low k1 values, Tangier VLDL were fractionated on an anti-apoA-II immunosorber. The retained fraction contained a newly identified triglyceride-rich lipoprotein characterized by the presence of apolipoproteins A-II, B, C-I, C-II, C-III, D, and E (LP-A-II:B:C:D:E or LP-A-II:B complex), whereas the unretained fraction consisted of previously identified triglyceride-rich apoB-containing lipoproteins free of apoA-II. In VLDL from patients with Tangier disease or type V hyperlipoproteinemia, the LP-A-II:B complex accounted for 70-90% and 25-70% of the total apoB content, respectively. The LP-A-II:B complexes had similar lipid and apolipoprotein composition; they were poor substrates for LPL as indicated by their low k1 values (0.014-0.016 min-1). In contrast, the apoA-II-free lipoproteins present in unretained fractions were effective substrates for LPL with k1 values equal to or greater than 0.0313 min-1. These results indicate that triglyceride-rich lipoproteins consist of several apoB-containing lipoproteins, including the LP-A-II:B complex, and that lipoprotein particles of similar size and density but distinct apolipoprotein composition also possess distinct metabolic properties.  相似文献   

8.
Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.  相似文献   

9.
High levels of circulating triglycerides (TGs), or hypertriglyceridemia, are key components of metabolic diseases, such as type 2 diabetes, metabolic syndrome, and CVD. As TGs are carried by lipoproteins in plasma, hypertriglyceridemia can result from overproduction or lack of clearance of TG-rich lipoproteins (TRLs) such as VLDLs. The primary driver of TRL clearance is TG hydrolysis mediated by LPL. LPL is regulated by numerous TRL protein components, including the cofactor apolipoprotein C-II, but it is not clear how their effects combine to impact TRL hydrolysis across individuals. Using a novel assay designed to mimic human plasma conditions in vitro, we tested the ability of VLDL from 15 normolipidemic donors to act as substrates for human LPL. We found a striking 10-fold difference in hydrolysis rates across individuals when the particles were compared on a protein or a TG basis. While VLDL TG contents moderately correlated with hydrolysis rate, we noticed substantial variations in non-apoB proteins within these particles by MS. The ability of LPL to hydrolyze VLDL TGs did not correlate with apolipoprotein C-II content, but it was strongly inversely correlated with apolipoprotein E (APOE) and, to a lesser extent, apolipoprotein A-II. Addition of exogenous APOE inhibited LPL lipolysis in a dose-dependent manner. The APOE3 and (particularly) APOE4 isoforms were effective at limiting LPL hydrolysis, whereas APOE2 was not. We conclude that APOE on VLDL modulates LPL activity and could be a relevant factor in the pathogenesis of metabolic disease.  相似文献   

10.
Human plasma very low density apolipoproteins C-I, C-II and C-III were recombined in vitro with triolein. The lipid-protein complexes were analyzed by ultracentrifugal flotation, agarose gel electrophoresis, immunoelectrophoresis and electron microscopy. Maximal protein/triolein ratios for apoprotein C-I, C-II, C-III-1 and C-III-2 were 50, 45, 95 and 55 microgram/mg, respectively. Electron micrographs exhibited spherical particles with diameters ranging from 200--2000 A comparable to native VLDL and chylomicrons. On agarose gel electrophoresis these complexes showed alpha-mobility. Kinetics of triolein hydrolysis by purified human plasma lipoprotein lipase were studied using these artificial lipoprotein substrates with different apoprotein/triolein ratios. The reaction followed the Michaelis-Menten equation. With increasing amounts of apo C-II, the apparent Km decreased from 0.60 to 0.11 mM. Incubation of the substrate with either rabbit anti-apo C-II gamma-globulins or digestion with trypsin prior to hydrolysis reversed this lowering effect on apparent Km. V was not altered significantly. Increasing amounts of apo C-I, apo C-III-1 or apo C-III-2 without apo C-II caused inhibition of triolein hydrolysis. In the presence of apo C-II, however, similar kinetic parameters were obtained as described above.  相似文献   

11.
We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.  相似文献   

12.
Chylomicron apolipoprotein metabolism was studied utilizing chylomicrons isolated from the pleural fluid of a patient with a recurrent chylous pleural effusion. Chylomicrons contained apolipoproteins A-I, A-II, B, C-I, C-II, C-III, D, E, and albumin. Following intravenous injection of [125I] chylomicrons, almost all of the A apolipoprotein radioactivity was recovered in high density lipoproteins, while only a small amount of the B apolipoprotein radioactivity was recovered in low density lipoproteins. These observations indicate that intestinal chylomicron A apolipoproteins serve as precursors for plasma high density lipoprotein A apolipoproteins and only a small fraction of chylomicron apolipoprotein B is metabolized to form low density lipoprotein apolipoprotein B.  相似文献   

13.
We previously reported an efficient proteomic approach to identify matrix metalloproteinase (MMP) substrates from complex protein mixture. Using the proteomic approach, apolipoprotein C-II (apoC-II), which is a cofactor of lipoprotein lipase (LPL) and a component of very-low density lipoprotein and chylomicron, has been identified as a putative MMP-14 substrate. Cleavage of apoC-II, with various MMPs, demonstrated that apoC-II is cleaved most efficiently by MMP-14, and also by MMP-7, among the tested MMPs. The 79-amino acid residue apoC-II was cleaved between Asn35 and Leu36 by MMP-14, and between Phe14 and Leu15 and between Asn35 and Leu36 by MMP-7. Cleavage of apoC-II by MMP-14 markedly decreased LPL activity and would thus impair hydrolysis of triglycerides in plasma and transfer of fatty acids to tissues. Our result suggests that cleavage of apoC-II by MMPs would be important for development of pathophysiological situations of apoC-II deficiency such as atherosclerosis.  相似文献   

14.
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia than apoE-null littermates in both the fasting and non-fasting states, with an almost doubling of cholesterol, primarily in IDL+LDL, and a marked increase in triglycerides; 3-fold in females to 260 +/- 80 mg/dl and 14-fold in males to 1409 +/- 594 mg/dl. HDL lipids were not significantly altered but HDL were apoC-I-enriched and apoA-II-depleted. Production rates of VLDL triglyceride were unchanged as was the clearance of post-lipolysis remnant particles. Plasma post-heparin hepatic lipase and lipoprotein lipase levels were undiminished as was the in vitro hydrolysis of apoC-I transgenic VLDL. However, HDL from apoC-I transgenic mice had a marked inhibitory effect on hepatic lipase activity, as did purified apoC-I. LPL activity was minimally affected. Atherosclerosis assay revealed significantly increased atherosclerosis in apoE-null/C-I mice assessed via the en face assay. Inhibition of hepatic lipase may be an important mechanism of the decrease in lipoprotein clearance mediated by apoC-I.  相似文献   

15.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

16.
The objective of this study was to examine the effect of insulin on lipoprotein synthesis and secretion in human fetal intestine. Jejunal explants were cultured with [14C]oleic acid in Leibovitz medium for 42 h. Although the addition of insulin (30 U) did not alter the incorporation of [14C]oleic acid into triglycerides, phospholipids and cholesteryl esters in the tissue, it significantly decreased (P < 0.05) the level of triglycerides (20%) in the medium. Among the three lipoprotein classes (chylomicron, VLDL, and HDL) isolated by ultracentrifugation, the chylomicron level was found significantly (P < 0.05) diminished in the medium (29%). Neither the lipid chemical composition of CM or that of VLDL, LDL and HDL was affected by the presence of insulin. These results suggest that chylomicron synthesis is modulated by insulin, whereas lipoprotein distribution and lipid composition are not regulated by this hormone.  相似文献   

17.
Lipoprotein lipase (LPL) and hepatic lipase (HL) are enzymatic activities involved in lipoprotein metabolism. The purpose of this study was to analyze the physicochemical modifications of plasma lipoproteins produced by LPL activation in two patients with apoC-II deficiency syndrome and by HL activation in two patients with LPL deficiency. LPL activation was achieved by the infusion of normal plasma containing apoC-II and HL was released by the injection of heparin. Lipoproteins were analyzed by ultracentrifugation in a zonal rotor under rate flotation conditions before and after lipase activation. The LPL activation resulted in: a reduction of plasma triglycerides; a reduction of fast-floating very low density lipoprotein (VLDL) concentration; an increase of intermediate density lipoprotein (IDL), which maintained unaltered flotation properties; an increase of low density lipoproteins (LDL) accompanied by modifications of their flotation rates and composition; no significant variations of high density lipoprotein (HDL) levels; and an increase of the HDL flotation rate. The HL activation resulted in: a slight reduction of plasma triglycerides; a reduction of the relative triglyceride content of slow-floating VLDL, IDL, LDL2, and HDL3 accompanied by an increase of phospholipid in VLDL and by an increase of cholesteryl ester in IDL; and a reduction of the HDL flotation rate. These experiments in chylomicronemic patients provide in vivo evidence that LPL and HL are responsible for plasma triglyceride hydrolysis of different lipoproteins, and that LPL is particularly involved in determining the levels and physicochemical properties of LDL. Moreover, in these patients, the LPL activation does not directly change the HDL levels, and LPL or HL does not produce a step-wise conversion of HDL3 to HDL2 (or vice versa) but rather modifies the flotation rates of all the HDL molecules present in plasma.  相似文献   

18.
Kinetic parameters of chicken and rat lipoprotein lipase (LPL) were determined in the incubation in vitro with various monoacid triacylglycerol emulsion and plasma lipoproteins. In rat- and chicken-LPL there is an inverse relationship between the hydrolytic rate by both LPL and the increased acyl-chain unsaturation of monoacid triacylglycerol; C18:1>C18:2>C18:3. The rat LPL catalyzed hydrolysis of saturated monoacid triaclyglycerol increased with an increase of chain length as C16>C14>C12, whereas in chicken LPL hydrolytic rate of C12 was higher than C14 and C16 triaclyglycerol. Vmax of rat- and chicken-LPL for chylomicron and VLDL were higher but apparent Km for those were lower than other lipoproteins. In chicken, Vmax and apparent Km of LPL for VLDL were almost the same as those for chylomicron, whereas in rat, Vmax of LPL for VLDL was twice that of chylomicron with the same apparent Km. The chicken and rat VLDL with different particle size prepared by Bio-Gel A50 gel chromatography were similarly hydrolyzed by LPL, while the hydrolysis of small chicken-chylomicron particles was inclined to be higher than that of the large particles. These results show species differences between chickens and rats in the substrate specificity of LPL.  相似文献   

19.
Current information suggests that the major forms of the human B apolipoproteins, B-100 and B-48, are under separate genetic control and are synthesized by the liver and intestine, respectively. The apolipoprotein B composition of plasma lipoproteins has been determined in order to gain insight into the metabolic defects in patients with dyslipoproteinemias. Patients with type I and type V hyperlipoproteinemia can be separated into two groups based on apolipoprotein composition and triglyceride concentration. The first group had markedly elevated plasma triglycerides with B-48 in the 1.006 g/ml density fraction and only B-100 within IDL and LDL. The second group had plasma triglycerides less than 1200 mg % and only B-100 in all density fractions. Patients with type III hyperlipoproteinemia had B-48 in only the density less than 1.006 g/ml with B-100 in IDL and LDL; the type III hyperlipoproteinemic patient with apolipoprotein E deficiency, however, had B-48 in density less than 1.006 g/ml fraction, IDL, and LDL. Patients with type IIa, IIb, and IV hyperlipoproteinemia had only B-100 in all density fractions. These combined results are interpreted as indicating that B-48 is associated with triglyceride-rich lipoproteins synthesized by the intestine and that patients with phenotypes I, III, and V have defects in chylomicron remnant metabolism. In addition, in patients with types I and V hyperlipoproteinemia, mild hypertriglyceridemia appears to be associated with lipoprotein particles of liver origin.  相似文献   

20.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号