首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison has been made between innervated and chronically denervated frog sartorius muscle fibers for resting potentials and a number of features of the action potential. Muscles were obtained from force-fed frogs maintained at room temperature for periods up to one year, and were studied with intracellular microelectrodes. Denervated muscles increased in sensitivity to acetylcholine by 100–400-fold. Studies were made in normal Ringer's solution, and in media in which concentrations of K+, Na+, Ca++, and Cl? were altered. The only significant differences noted between the denervated and the innervated fibers were a reduction in the maximum rate of fall of the action potential (ca. 20%) and an increase in the fall time of the active membrane potential (ca. 25%). These differences were present in normal Ringer's solution and remained when the bathing medium was modified. The resting membrane potential of denervated and innervated muscles varied with log [K+]o in exactly the same manner, and followed the theoretical relation proposed by Hodgkin (Proc. Roy. Soc., B, 148: 1–37, ′58), with the term representing the ratio of the sodium to potassium permeabilities assigned a value of 0.01. The results suggest that (a) the resting sodium and potassium permeabilities are reduced proportionately after denervation, since it is known that denervated frog muscle has a smaller potassium permeability, and (b) the mechanism controlling the increase in potassium conductance during the action potential is less available after denervation. Data indicate that the system controlling the sodium permeability is capable of activation to the same extent as in innervated muscles. Muslces which had been allowed to reinnervate did not show the differences presented by the denervated muscles. Innervated and denervated muscles did not show any significant changes in maximum rates of rise or fall of the action potential, nor of the active membrane potential amplitude over a 30 mV range of resting membrane potentials, indicating that the sodium and potassium permeability systems are fully available in frog muscle at membrane potentials larger than ?80 mV.  相似文献   

2.
Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.  相似文献   

3.
Membrane potentials, cable parameters, and component resting conductances were measured in extensor digitorum longus (EDL) muscle fibers from adult rats in vitro at 24°C, after 15 to 18 days of denervation by nerve section, and at seven to ten days following epineural injection of 100 to 450 μg of colchicine in the peroneal nerve. The denervated muscles were paralyzed throughout the experimental period, whereas the colchicine-treated preparations showed no clinical paralysis except for the first day or two. The EDL from the untreated side served as a control. Both the denervated and colchicine-treated fibers were depolarized, showed signs of fibrillation, had tetrodotoxin-resistant action potentials, and membrane resistance was increased two- to sevenfold. In the denervated fibers, mean chloride conductance GCl dropped from a control value of 3196 to 596 μmhos/cm2 while mean potassium conductance GK showed a tendency to rise from 260 to 332 μmhos/cm2. Colchicine-treated fibers while showing a similar fall in mean GCl from 2993 to 1066 μmhos/cm2, also showed a significant fall in mean GK from 213 to 116 μmhos/cm2. It was concluded that factors transported by the microtubular system are important for the maintenance of the high resting GCl of mammalian skeletal muscle fibers.  相似文献   

4.
Membrane potentials, cable parameters, and component resting conductances were measured in extensor digitorum longus (EDL) muscle fibers from adult rats in vitro at 24 degrees C, after 15 to 18 days of denervation by nerve section, and at seven to ten days following epineural injection of 100 to 450 mug of colchicine in the peroneal nerve. The denervated muscles were paralyzed throughout the experimental period, whereas the colchicine-treated preparations showed no clinical paralysis except for the first day or two. The EDL from the untreated side served as a control. Both the denervated and colchicine-treated fibers were depolarized, showed signs of fibrillation, had tetrodotoxin-resistant potentials, and membrane resistance was increased two- to sevenfold. In the denervated fibers, mean chloride conductance GC1 dropped from a control value of 3196 to 596 mumhos/cm2 while mean potassium conductance GK showed a tendency to rise from 260 to 332 muhos/cm2. Colchicine-treated fibers while showing a similar fall in mean GC1 from 2993 to 1066 mumhos/cm2, also showed a significant fall in mean GK from 213 to 116 mumhos/cm2. It was concluded that factors transported by the microtubular system are important for the maintenance of the high resting GC1 of mammalian skeletal muscle fibers.  相似文献   

5.
In innervated skeletal muscle fibers, dystrophin and beta-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of > or = 10 nM purified recombinant muscle agrin into denervated muscles preserved the transverse orientation of costameric proteins that is typical for innervated muscles, as did a single application of > or = 1 microM neural agrin. At lower concentration, neural agrin induced acetylcholine receptor aggregates, which colocalized with longitudinally oriented beta-dystroglycan, dystrophin, utrophin, syntrophin, rapsyn, and beta 2-laminin in denervated unstimulated fibers and with the same but transversely oriented proteins in innervated or denervated stimulated fibers. The results indicate that costameres are plastic structures whose organization depends on electrical muscle activity and/or muscle agrin.  相似文献   

6.
The dependence of the membrane potential on potassium, chloride, and sodium ions, was determined at the pH's of 6.0, 7.5, and 9.0 for the resting and depolarized crayfish ventral nerve cord giant axon. In normal saline (external potassium = 5.4 mM), the dependence of the membrane potential on the external potassium ions decreased with lowered pH while that for chloride increased. In contrast, in the potassium depolarized axon (external potassium = 25 mM), the dependence of the membrane potential on external potassium was minimum around pH 7.5 and increased in either more acidic or basic pH. In addition, the dependence of the membrane potential on external chloride in the depolarized axon was maximum at pH 7.5 and decreased in either more acidic or basic pH. The sodium dependency of the membrane potential was small and relatively unaffected by pH or depolarization. The data are interpreted as indicating a reversible surface membrane protein-phospholipid conformation change which occurs in the transition from the resting to the depolarized axon.  相似文献   

7.
Summary Mammalian skeletal muscle fibers exhibit large slow changes in membrane potential when hyperpolarized in standard chloride solutions. These large slow potential changes are radically reduced in low chloride solutions, where the faster and smaller potential change (creep), usually observed in amphibian fibers, becomes apparent. The slow potential change during a hyperpolarizing current pulse leads to an increase in apparent resistance of up to nine times the instantaneous value and takes minutes to reach a steady value. It then takes a similar time to decay very slowly back to the resting membrane potential after the current pulse. The halftime for the slow potential change was found to be inversely proportional to the current magnitude. From measurements of immediate postpulse membrane potentials, assuming constant ionic permeabilities, the internal chloride concentration was calculated to decrease exponentially towards a steady value (e.g., for one fiber from 12.3 to 6.6mm after a 330-sec pulse). The time course and magnitude of the concentration change were predicted from chloride transport number differences, and the known and measured properties of the fibers, and were found to agree very well with the values obtained from experimental measurements. In addition, the shapes of theV 2-V 1 responses, measured in the three-electrode current clamp set-up with either potassium chloride or potassium citrate current electrodes, were as predicted by transport number chloride depletion effects and were at variance with the predictions of a permeability change mechanism.  相似文献   

8.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10- minus 4 M oubain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

9.
Rhythmic activity in Purkinje fibers of sheep and in fibers of the rabbit sinus can be produced or enhanced when a constant depolarizing current is applied. When extracellular calcium is reduced successively, the required current strength is less, and eventually spontaneous beating occurs. These effects are believed due to an increase in steady-state sodium conductance. A significant hyperpolarization occurs in fibers of the rabbit sinus bathed in a sodium-free medium, suggesting an appreciable sodium conductance of the "resting" membrane. During diastole, there occurs a voltage-dependent and, to a smaller extent, time-dependent reduction in potassium conductance, and a pacemaker potential occurs as a result of a large resting sodium conductance. It is postulated that the mechanism underlying the spontaneous heart beat is a high resting sodium current in pacemaker tissue which acts as the generator of the heart beat when, after a regenerative repolarization, the decrease in potassium conductance during diastole reestablishes the condition of threshold.  相似文献   

10.
Resting membrane potentials of isolated frog sartorius muscles were measured under a variety of conditions using intracellular glass microelectrodes. Muscle cells depolarized by the addition of 5.0 or 10.0 mM KCl to the bathing Ringer solution can be repolarized some 5 to 10 mV by the substitution of an equivalent amount of K-aspartate for KCl in the presence of 2.0 mM Mg++. The repolarization produced by this method persists when the muscle is again placed in the initial KCl solution, thus eliminating the possibility that the hyperpolarization is due to the reduction of chloride in the bathing medium. If for some reason the resting membrane potential of the muscle fibers is considerably below (less negative than) the normal level of 92 mV reported for muscles bathed in 2.5 mM Ringer solution, the substitution of 2.5 mM K-aspartate for the 2.5 mM KCl and the addition of 2.0 mM Mg-aspartate to the Ringer solution will, within 15 minutes, repolarize the fiber to the normal level. Magnesium ions alone will not produce the observed repolarization nor can it be attributed to a reduction in the activity of the potassium in the Ringer solution.  相似文献   

11.
The effect of tetrodotoxin (TTX) (10(-5)-10(-6)M) on the mechanical activity and on the action potential of innervated and denervated muscle of the rat was studied. The twitch tension was reduced to 10 % of the control values within 20 min of TTX 10(-6) introduction. This effect was reversible. The mean twitch tension in the presence of 10(-6)M TTX expressed as a percentage of control was 9.3 +/- 2.4 (SEM) for innervated muscle and 10.9 +/- 2.5 for denervated muscle. The dose-effect twitch relation for denervated muscles was not significantly different from that observed in control innervated muscles in the 10(-3)-10(-6) TTX range. Action potentials of innervated muscles could not be elicited in 10(-6)M TTX. In the presence of this (TTX) fibers of chronically denervated muscles consistently responded to stimulation with action potentials which were slower and smaller but still with overshoot, contrasting with fibrillation potentials that had been described to be blocked by TTX.  相似文献   

12.
Fibers of the metathoracic extensor tibia muscle of the cricket Teleogryllus oceanicus are innervated by a slow excitatory axon (slow fibers), a fast excitatory axon (fast fibers), or by both slow and fast axons (dual fibers). Sectioning metathoracic nerve 5 removes the fast axon input to the muscle but not that of the slow axon. Following such partial denervation, the mechanical responses initiated by the slow axon increase progressively for at least 30 days; twitch tensions reach 5–10 times those of control muscles and tetanic tensions 10–30 times control values. After sectioning nerve 5, resting membrane potentials decrease in those fibers which originally received fast axon input and the input resistance of all fiber types increases, including that of slow fibers which are not innervated through nerve 5. Excitatory junctional potentials (EJPs) initiated by the slow axon become larger following partial denervation, accounting in part for the larger contraction amplitudes. The increased input resistance is adequate to account for the larger EJPs in slow fibers but not for the proportionally greater increase in EJP amplitude in fibers which were formerly dually innervated. The change in EJP amplitude is abrupt in slow fibers and gradual in formerly dual fibers.  相似文献   

13.
In frog twitch muscle fibres, Na-octanoate (NaC8) shifted the relation between potassium induced tension and membrane potential to the right. The present study has been carried out to investigate the effect of this fatty acid on frog tonic fibres. Potassium contractures measured on bundles of 30-40 fibres of ileofibularis muscles were less decreased by NaC8 (2.5-10 mmol/l) than those of twitch fibre bundles. In denervated muscles the sensitivity to NaC8 was increased, probably due to the development of sodium channels in the membranes. Experiments with mixed fibre bundles also showed a lower influence of NaC8 on potassium contracture of tonic fibres. On the other hand, tonic fibres showed a lower threshold of the potassium induced tension as well as a lower K+ concentration for maximal activation. This lower threshold was further lowered by NaC8, corresponding to a shift of the relation between potassium concentration and tension to the left. The membrane resting potentials were -58 +/- 9 mV in tonic fibres and -83 +/- 5 mV in twitch fibres. Five mmol/l NaC8 only induced depolarization of the membrane of tonic fibres. This depolarization (by about 20 mV) may be responsible for the threshold shift to lower K+ concentration in NaC8-exposed tonic fibres. In addition to the effects of NaC8 on sodium channels, interactions with Ca2+ binding sites are discussed.  相似文献   

14.
The secretion of proteins labelled by incorporation of radioactive amino acids was studied in innervated and 10 to 13-day-denervated mouse skeletal muscle. The secretion of 3H-leucine-labelled proteins, expressed per mg muscle wet weight, increased after denervation, and the kinetics of the secretory process was also altered in denervated muscle. Separation of secreted 35S-methionine-labelled proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by autoradiography revealed some denervation-induced alterations in the pattern of secreted proteins. The secretion from both innervated and denervated muscle was highly temperature sensitive and was reversibly inhibited by brefeldin A, a drug that blocks forward membrane transport from the endoplasmic reticulum/Golgi apparatus. This drug was also found to inhibit the uptake of fluorescein isothiocyanate-labelled dextran in denervated muscle but had no effect on the endocytotic activity of innervated muscle. This lends support to the hypothesis that the increased endocytotic activity in denervated muscle is coupled to a high secretory activity.Abbreviations BF A Brefeldin A - dpm Disintegrations per minute - EDL extensor digitorum longus - FITC fluorescein isothiocyanate - LDH lactate dehydrogenase - SDS-P AGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

15.
Summary Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species,Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 103-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10mm zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA相似文献   

16.
Xenopus oocytes were used to express polyadenylated messenger RNAs (mRNAs) encoding acetylcholine receptors and voltage-activated sodium channels from innervated and denervated skeletal muscles of cat and rat. Oocytes injected with mRNA from denervated muscle acquired high sensitivity to acetylcholine, whereas those injected with mRNA from innervated muscle showed virtually no response. Hence the amount of translationally active mRNA encoding acetylcholine receptors appears to be very low in normally innervated muscle, but increases greatly after denervation. Conversely, voltage-activated sodium currents induced by mRNA from innervated muscle were about three times larger than those from denervated muscle; this result suggests that innervated muscle contains more mRNA coding for sodium channels. The sodium current induced by mRNA from denervated muscle was relatively more resistant to block by tetrodotoxin. Thus a proportion of the sodium channels in denervated muscle may be encoded by mRNAs different from those encoding the normal channels.  相似文献   

17.
The membrane potential of ventral longitudinal muscles of Tenebrio molitor larvae was studied as a function of time and of cesium substituted for all or part of external potassium. The conventional microelectrode technique was applied. The mean value of resting potential was — 47.4 mV in standard physiological saline which did not change significantly with time (90 min). Cesium caused, almost immediately, a significant hyperpolarization of membrane potential the magnitude of which depended on cesium concentration. The presence of external potassium enhanced the effectiveness of cesium action, resulting in more pronounced hyperpolarization. The effect of Cs ions was fully reversible upon washing. These data support the idea that inward potassium current can be activated at resting potential level, at least in some cells, including the muscles studied. It is presumed that this potassium current might have some contribution to the resting membrane potential generation in mealworm larva muscles.Abbreviations [K +]0 extracellular concentration of K ions - E m resting membrane potential of a cell when bathed in normal saline - E K K + equilibrium potential - MP membrane potential - RP resting potential - SD standard deviation - SEM standard error of the mean  相似文献   

18.
Type II cells were isolated from rat lungs by elastase digestion and purified by centrifugal elutriation. The fluorescent dye, Di-S-C3(5), was used as a probe to monitor transmembrane potential (Em) of cells suspended in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered medium. With this technique, the Em of type II cells was estimated to be -27 +/- 2 mV. This resting Em is very close to the equilibrium potential for chloride (-21 mV), which suggests that chloride is passively distributed in type II cells. The resting Em of type II cells is more dependent on the extracellular concentration of potassium (K+) than on external sodium (Na+); i.e., the membrane depolarizes as external sodium is replaced by potassium, suggesting that in unstimulated type II cells the membrane is more permeable to potassium than to sodium. In addition, the resting potential appears to be due, in part, to the activity of a ouabain-sensitive, Na-K pump, which acts to hyperpolarize type II cells. Addition of a membrane perturbant, phorbol myristate acetate (PMA, 10 micrograms/ml), to a type II cell suspension results in an increase in oxygen consumption and membrane depolarization. Both of these responses are sodium dependent and thus appear to be linked to a PMA-induced increase in sodium permeability.  相似文献   

19.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10?4 M ouabain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

20.
Tam  Siu Lin  Gordon  Tessa 《Brain Cell Biology》2003,32(5-8):961-974
This review considers the relative roles of sprouting stimuli, perisynaptic Schwann cells and neuromuscular activity in axonal sprouting at the neuromuscular junction in partially denervated muscles. A number of sprouting stimuli, including insulin-like growth factor II, which are generated from inactive muscle fibers in partially denervated and paralyzed skeletal muscles, has been considered. There is also evidence that perisynaptic Schwann cells induce and guide axonal sprouting in adult partially denervated muscles. Excessive neuromuscular activity significantly reduces bridging of perisynaptic Schwann cell processes between innervated and denervated endplates and thereby inhibits axonal sprouting in partially denervated adult muscles. Elimination of neuromuscular activity is also detrimental to sprouting in these muscles, suggesting that calcium influx into the nerve is crucial for axonal sprouting. The role of neuromuscular activity in axonal sprouting will be considered critically in the context of the roles of sprouting stimuli and perisynaptic Schwann cells in the process of axonal sprouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号