首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of tendon tissues in tendon healing.   总被引:3,自引:0,他引:3  
  相似文献   

3.
The purpose of this study was to examine patellar tendon (PT) size and mechanical properties in subjects with a side-to-side strength difference of >/=15% due to sport-induced loading. Seven elite fencers and badminton players were included. Cross-sectional area (CSA) of the PT obtained from MRI and ultrasonography-based measurement of tibial and patellar movement together with PT force during isometric contractions were used to estimate mechanical properties of the PT bilaterally. We found that distal tendon and PT, but not mid-tendon, CSA were greater on the lead extremity compared with the nonlead extremity (distal: 139 +/- 11 vs. 116 +/- 7 mm(2); mid-tendon: 85 +/- 5 vs. 77 +/- 3 mm(2); proximal: 106 +/- 7 vs. 83 +/- 4 mm(2); P < 0.05). Distal tendon CSA was greater than proximal and mid-tendon CSA on both the lead and nonlead extremity (P < 0.05). For a given common force, stress was lower on the lead extremity (52.9 +/- 4.8 MPa) compared with the nonlead extremity (66.0 +/- 8.0 MPa; P < 0.05). PT stiffness was also higher in the lead extremity (4,766 +/- 716 N/mm) compared with the nonlead extremity (3,494 +/- 446 N/mm) (P < 0.05), whereas the modulus did not differ (lead 2.27 +/- 0.27 GPa vs. nonlead 2.16 +/- 0.28 GPa) at a common force. These data show that a habitual loading is associated with a significant increase in PT size and mechanical properties.  相似文献   

4.
Ultraviolet light can be used to stimulate electrical current flow in bone and tendon. This stimulated photocurrent is directional. In tendon the photocurrent parallel to the fibrils is greater than the photocurrent perpendicular to the fibrils. In bone, the longitudinal photocurrent is less than the transverse photocurrent.  相似文献   

5.
The stress-strain relations in mammalian tendon are analyzed in terms of the structure and mechanics of its constituents. The model considers the tensile and bending strength of the collagen fibers, the tensile strength of the elastin fibers, and the interaction between the matrix and the collagen fibers. The stress-strain relations are solved through variational considerations by assuming that the fibermaxtrix interactions can be modeled as beam on elastic foundation. The tissue thus modeled is a hyperelastic material. It is further shown that on the basis of the model, the dominant parameters to the tendon's behavior can be evaluated from simple tensile tests.  相似文献   

6.
7.
8.
9.
Mechanical properties of the rabbit patellar tendon.   总被引:4,自引:0,他引:4  
The mechanical and structural properties of the patellar tendon fascicle-bone units of rabbit knees were determined by tensile tests, particularly focusing on their local differences. There were no significant differences in the strains measured by a video dimension analyzer among the proximal, middle, and distal regions of the central portion of tendon. The mechanical properties of the medial portion agreed well with those of the central portion. However, significant differences were observed in the tensile strength between the lateral and the other two portions: the tensile strength of the lateral portion was about 16 percent larger than those in the other portions.  相似文献   

10.
11.
Tendons are collagenous tissues made of mainly Type I collagen and it has been shown that the major proteoglycans of tendons are decorin and versican. Little is still known about the catabolism of these proteoglycans in tendon. Therefore, the aim of the study was to characterise the proteoglycans including their catabolic products present in uncultured bovine tendon and in the explant cultures of tendon. In this study, the proteoglycans were extracted from the tensile region of deep flexor tendon and isolated by ion-exchange chromatography and after deglycosylation analysed by SDS-polyacrylamide electrophoresis, Western blotting and amino-terminal amino acid sequence analysis. Based on amino acid sequence analysis, approximately 80% of the total proteoglycan core proteins in fresh tendon was decorin. Other species that were detected were biglycan and the large proteoglycans versican (splice variants V(0) and/or V(1)) and aggrecan. Approximately 35% of decorin present in the matrix showed carboxyl-terminal proteolytic processing at a number of specific sites. The analysis of small proteoglycans lost to the medium of tendon explants showed the presence of biglycan and decorin with the intact core protein as well as decorin fragments that contained the amino terminus of the core protein. In addition, two core protein peptides of decorin starting at residues K(171) and D(180) were observed in the matrix and one core protein with an amino-terminal sequence commencing at G(189) was isolated from the culture medium. The majority of the large proteoglycans present in the matrix of tendon were degraded and did not contain the G1 globular domain. Furthermore the aggrecan catabolites present in fresh tendon and lost to the medium of explants were derived from aggrecanase cleavage of the core protein at residues E(373)-A(374), E(1480)-G(1481) and E(1771)-A(1772). The analysis of versican catabolites (splice variants V(0) and/or V(1)) also showed evidence of degradation of the core protein by aggrecanase within the GAG-beta subdomain, as well as cleavage by other proteinase(s) within the GAG-alpha and GAG-beta subdomains of versican (variants V(0) and/or V(2)). Degradation products from the amino terminal region of type XII collagen were also detected in the matrix and medium of tendon explants. This work suggests a prominent role for aggrecanase enzymes in the degradation of aggrecan and to a lesser extent versican. Other unidentified proteinases are also involved in the degradation of versican and small leucine-rich proteoglycans.  相似文献   

12.
We present two cases of conservative treatment of total loss of the Achilles tendon. In our opinion the functional result is acceptable, without tendon grafting. The action of the sural muscles is transmitted through scar underlying the pedicled flaps used to resurface the wounds.  相似文献   

13.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

14.
This study evaluates tendon coaptation using Nd:YAG laser photoirradiation in an in vivo cockerel model. Using the intervinculum segments of the flexor profundus tendons, experimental transactions were performed. Tendon coaptation was then attempted using laser photoirradiation. Tendons were immediately examined for evidence of stable coaptation. After this assessment, specimens were excised and processed for electron microscopic examination and exposure to trypsin digestion. Despite varying multiple laser parameters, tissue welding was not observed. The subsequent functional and ultrastructural observations of irradiated tendon suggest that these changes are those of simple thermal denaturation. The results of this study suggest that when successful tissue welding has been observed in other tissue types, the mechanism is unlikely to be because of formation of intermolecular collagen bonds as hypothesized. An alternative hypothesis is that laser welding reflects photothermal coagulation of cytoplasmic peptides or nucleic acids liberated at the coaptation interface. This may explain the successful welding of cell-rich tissues such as bowel, vas deferens, and arteries and the observed failure of laser welding in collagen-rich but relatively hypocellular tendon.  相似文献   

15.
Degenerative tendon injury or "tendinopathy" is one of the most common disorders of the musculoskeletal system. We used a rat model (Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, and Carpenter JE. J Shoulder Elbow Surg 9: 79-84, 2000) to identify novel gene expression in the exercised-induced degenerated supraspinatus tendon by microarray and real-time PCR analyses. We identified several novel groups of differentially expressed genes, including those involved in apoptosis and related stress responses, and also genes that appear to be involved in glutamate signaling in tendon tissue, similar to recent findings by us in a microarray study of healing in the transected Achilles tendon of the rat (24). Until recently this kind of cellular communication was thought only to exist in cells of the central nervous system (CNS), where it is vital for CNS function. We further show that glutamate appears to induce a proapoptotic response in cultured tendon cells, similar to the "excitotoxic" response of cells in the CNS that become overstimulated. This may prove to be at least a partial cause of degeneration in overused tendon tissue and allow the development of treatments or "prehibilitation" regimens for tendinopathy based on currently used non-toxic glutamate antagonists.  相似文献   

16.
Mechanical transduction in the Golgi tendon organ: a hypothesis.   总被引:1,自引:0,他引:1  
Morphological evidence, gained from light and electron microscopy, has shown that the unmyelinated terminal branches of the Ib afferent fiber innervating the Golgi tendon organ (GTO) lie within the spaces between braids of collagen. Based on empirical data it is proposed that force applied to a muscle's tendon will straighten these collagen braids and cause compressional deformation of the axon branches trapped between them. The mechanical events, which are presumed to occur within the GTO, appear to explain how it may function as a biological force transducer under static loading conditions. The mechanical principal described for the GTO may be a primitive and wide-spread biological mechanism employed by certain types of sensory receptors that function as position (and force) detectors.  相似文献   

17.
18.
A new friction tester of the flexor tendon.   总被引:1,自引:0,他引:1  
We have developed a new device to measure the friction force and calculate the friction coefficient between a rabbit flexor tendon, a pulley and a proximal phalanx. The flexor digitorum fibularis tendon of a rabbit was taken intact with the proximal phalanx, and tendon pulleys were attached to both ends of the bone. Both ends of the tendon were clamped to acrylic plates and connected to stainless-steel plates equipped with strain gauges. A pretension of 1.96 N was applied so as not to loosen the tendon. The proximal phalanx was fixed to an acrylic plate on the actuator, which gave 8 mm of transfer to the acrylic plate at a speed of 2 mm/s. The interface between the tendon and the surrounded tissue created the friction force, when the load was applied on the distal pulley. The friction force could be obtained from the difference between the tension of both ends of the tendon, which was measured with strain gauges and sampled with a personal computer. The friction force and the friction coefficient were calculated from the measured force and the applied load. The load and the pre-loading time, which was defined as loading duration before gliding, were varied in order to observe the change of the friction coefficient. The friction coefficient was not affected by the load and increased with the pre-loading time. The value of mu(s) ranged from 0.027 to 0.111 (0.072 +/- 0.023), and that of (mu)d ranged from 0.010 to 0.069 (0.039 +/- 0.014) (pre-loading time was 5 s). Our method will allow for the examination of various surgical treatments and lubricants. Moreover, it can be applied to other tissues of any animals with similar structures to the rabbit's digitorum.  相似文献   

19.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

20.
The locking loop tendon suture is suggested as an effective method for suturing tendons where tension is likely during the early post-operative period. The relationship of the intratendinous parts of the suture to each other is critical to the resultant tensile strength. Experimental work has confirmed its strength and its lack of interference with the intrinsic vasculature of the tendons. Our results from this clinical repair of 72 tendons by this method have been better, in general, than we obtained with other currently popular methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号