首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

2.
We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.  相似文献   

3.
Root graviresponsiveness in normal and carotenoid-deficientmutant seedlings of Zea mays was not significantly different.Columella cells in roots of mutant seedlings were characterizedby fewer, smaller, and a reduced relative volume of plastidsas compared to columella cells of normal seedlings. Plastidsin columella cells of mutant seedlings possessed reduced amountsof starch. Although approximately 10 per cent of the columellacells in mutant seedlings lacked starch, their plastids werelocated at the bottom of the cell. These results suggest that(i) carotenoids are not necessary for root gravitropism, (ii)graviresponsiveness is not necessarily proportional to the size,number, or relative volume of plastids in columella cells, and(iii) sedimentation of plastids in columella cells may not resultdirectly from their increased density due to starch content.Plastids in columella cells of normal and mutant seedlings wereassociated with bands of microtubule-like structures, suggestingthat these structures may be involved in ‘positioning’plastids in the cell. Zea mays, graviperception, graviresponsiveness, carotenoids, vp-9 mutant, columella cell, roots  相似文献   

4.
Primary roots of Zea mays cv. Amylomaize were less graviresponsive than primary roots of the wild-type Calumet cultivar. There were no significant differences in: 1) the partitioning of volume to organelles in columella cells, 2) the size or density of amyloplasts, or 3) rates and overall patterns of organelle redistribution in horizontally-oriented roots of the two cultivars. Amyloplasts and nuclei were the only organelles whose movement correlated positively with the onset of root gravicurvature. However, the onset of gravicurvature was not directly proportional to the average sedimentation rate of amyloplasts, since amyloplasts sedimented at equal rates in columella cells of both cultivars despite their differences in root gravicurvature. The more graviresponsive roots of Calumet seedlings were characterized by a more strongly polar movement of 45Ca2+ from the upper to lower sides of their root tips than the less graviresponsive roots of Amylomaize seedlings. These results suggest that the decreased graviresponsiveness of horizontally-oriented roots of Amylomaize seedlings may be due to a delay in or decreased ability for polar transport of calcium rather than to smaller, more slowly sedimenting amyloplasts as has been suggested for their less graviresponsive coleoptiles.  相似文献   

5.
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.  相似文献   

6.
Moore, R. 1985. A morphometric analysis of the redistributionof organellcs in columella cells in primary roots of normalseedlings and agravitropic mutants of Hordeum vulgare.—J.exp. Bot. 36:1275–1286. The redistribution of organeUes m columella cells of horizontally-orientedroots of Hordeum vulgare was quantified in order to determinewhat structural changes in graviperceptive (i.e, columella)cells are associated with the onset of root gravicurvature.The sedimentation of amyloplasts is the only major change incellular structure that correlates positively with the onsetof root gravicurvature, which begins within 15 min after re-orientation.There is no consistent contact between sedimented amyloplastsand any other organelles. Nuclei are restricted to the proximalends of columella cells in vertically-oriented roots, and remainthere throughout gravicurvature after roots are oriented horizontally.Root gravicurvature does not involve significant changes in(1) the volume of columella cells, (2) the relative or absolutevolumes of organelles in columella cells, or (3) the distributionof endoplasmic reticulum (ER). The size, number and sedimentationrates of amyloplasts in columella cells of non-graviresponsiveroots of mutant seedlings are not significantly different fromthose of graviresponsive roots of normal seedlings. Similarly,there is no significant difference in (1) cellular volume, (2)distribution or surface area of ER, (3) patterns or rates oforganelle redistribution in horizontally-oriented roots, or(4) relative or absolute volumes of organelles in columellacells of graviresponsive and non-graviresponsive roots. Theseresults suggest that the lack of gravi-responsiveness by rootsof mutant seedlings is probably not due to either (1) structuraldifferences in columella cells, or (2) differences in patternsor rates of organelle redistribution as compared to that characteristicof graviresponsive roots. Thus, the basis of non-graviresponsivenessin this mutant is probably different from other agravitropicmutants so far studied. Key words: Agravitropic mutant, barley, columella cell, gravitropism (root), Hordeum vulgare, ultrastructure  相似文献   

7.
The redistribution of organelles in columella cells of horizontally-oriented roots of Hordeum vulgare was quantified in order to determine what structural changes in graviperceptive (i.e., columella) cells are associated with the onset of the root gravicurvature. The sedimentation of amyloplasts is the only major change in cellular structure that correlates positively with the onset of root gravicurvature, which begins within 15 min after re-orientation. There is no consistent contact between sedimented amyloplasts and any other organelles. Nuclei are restricted to the proximal ends of columella cells in vertically-oriented roots, and remain there throughout gravicurvature after roots are oriented horizontally. Root gravicurvature does not involve significant changes in (1) the volume of columella cells, (2) the relative or absolute volumes of organelles in columella cells, or (3) the distribution of endoplasmic reticulum (ER). The size, number and sedimentation rates of amyloplasts in columella cells of non-graviresponsive roots of mutant seedlings are not significantly different from those of graviresponsive roots of normal seedlings. Similarly, there is no significant difference in (1) cellular volume, (2) distribution or surface area of ER, (3) patterns or rates of organelle redistribution in horizontally-oriented roots, (4) relative or absolute volumes of organelles in columella cells of graviresponsive and non-graviresponsive roots. These results suggest that the lack of graviresponsiveness by roots of mutant seedlings is probably not due to either (1) structural differences in columella cells, or (2) differences in patterns or rates of organelle redistribution as compared to that characteristic of graviresponsive roots. Thus, the basis of non-graviresponsiveness in this mutant is probably different from other agravitropic mutants so far studied.  相似文献   

8.
MOORE  R. 《Annals of botany》1986,57(2):119-131
In order to determine what structural changes in graviperceptivecells are associated with the onset of root gravicurvature,the redistribution of organelles in columella cells of horizontally-oriented,graviresponding roots of Zea mays has been quantified. Rootgravicurvature began by 15 min after reorientation, and didnot involve significant changes in the (i) volume of individualcolumella cells or amyloplasts, (ii) relative volume of anycellular organelle, (iii) number of amyloplasts per columellacell, or (iv) surface area or cellular location of endoplasmicreticulum. Sedimentation of amyloplasts began within 1 to 2min after reorientation, and was characterized by an intenselystaining area of cytoplasm adjacent to the sedimenting amyloplasts.By 5 min after reorientation, amyloplasts were located in thelower distal corner of columella cells, and, by 15 min afterreorientation, overlaid the entire length of the lower cellwall. No consistent contact between amyloplasts and any cellularstructure was detected at any stage of gravicurvature. Centrally-locatednuclei initially migrated upward in columella cells of horizontally-orientedroots, after which they moved to the proximal ends of the cellsby 15 min after reorientation. No significant pattern of redistributionof vacuoles, mitochondra, dictyosomes, or hyaloplasm was detectedthat correlated with the onset of gravicurvature. These resultsindicate that amyloplasts and nuclei are the only organelieswhose movements correlate positively with the onset of gravicurvatureby primary roots of this cultivar of Zea mays. Zea mays, root gravitropism, ultrastructure, morphometry, graviperception  相似文献   

9.
Primary roots of Zea mays seedlings germinated and grown in 0.1 mM chloramphenicol (CMP) were significantly less graviresponsive than primary roots of seedlings germinated and grown in distilled water. Elongation rates of roots treated with CMP were significantly greater than those grown in distilled water. Caps of control and CMP-treated roots possessed extensive columella tissues comprised of cells containing numerous sedimented amyloplasts. These results indicate that the reduced graviresponsiveness of CMP-treated roots is not due to reduced rates of elongation, the absence of the presumed gravireceptors (i.e., amyloplasts in columella cells), or reduced amounts of columella tissue. These results are consistent with CMP altering the production and/or transport of effectors that mediate gravitropism.  相似文献   

10.
Summary The root apex of barley,Hordeum vulgare cv. Proctor, is a structure which undergoes a number of gross morphological and ultrastructural changes from the normal patterns of development when grown under a small degree of applied mechanical constraint (2 × 104 Pa.). The root cap is generally smaller and thus does not confer to the root meristem the same degree of protection as caps growing in an uncompacted medium. Associated with this loss of peripheral cells is a reduction in the volume of mucigel in contact with the root apex.In many impeded caps, the planes of division in the calyptrogen are often neither transverse nor longitudinal. There is a reduction in both the number of amyloplasts and starch grains per amyloplast in the columella, but any statolith function of these must not be impaired since the root remains geotropically responsive. The patterns of accumulation of polysaccharide in the walls of peripheral cells as a result of Golgi activity are modified by mechanical impedance.  相似文献   

11.
Starch grain morphology in laticifer amyloplasts of Euphorbia pulcherrima Willd. (poinsettia) was examined for evidence of starch metabolism in vegetative and flowering plants. Laticifer starch grains in vegetative plants were rod shaped with lengths ranging from 3 to 60 μm. Average grain size was significantly larger in stems than leaves, and in older than younger tissues. Starch grain length frequency was unimodal and approximated a normal probability distribution in stems, but was skewed positively toward smaller grains in leaves. Frequency distributions were shifted toward larger grains in older tissues. Under short-day photoperiod (flowering) conditions, round starch grains formed in latex of stems, and the average length of rod-shaped grains decreased in latex of stems and leaves. Round grains did not occur in laticifers of leaves or bracts. Round starch grains often occurred in aggregates of two or more subunits. Changes in size and shape of latex starch grains indicate that amyloplasts in fully differentiated laticifers metabolize starch. Identification of metabolically active amyloplasts in differentiated laticifers suggests that the function of these organelles may involve starch mobilization under certain physiological conditions.  相似文献   

12.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

13.
MOORE  R. 《Annals of botany》1983,51(6):771-778
A morphometric analysis of the ultrastructure of columella statocytesin primary roots of Zea mays was performed to determine theprecise location of cellular organelles in graviperceptive cells.Vacuoles occupy the largest volume in the cell (11.4 per centof the protoplasm). The nucleus (9.51 per cent), amyloplasts(7.57 per cent), mitochondria (3.42 per cent), spherosomes (2.13per cent) and dictyosomes (0.55 per cent) occupy progressivelysmaller volumes of the statocytes. All organelles are distributedasymmetrically within the cell. Amyloplasts, spherosomes anddictyosomes are found in greatest numbers (and relative volumes)in the lower (i.e. ‘bottom’) third of the cell.The largest numbers and relative volumes of mitochondria arein the lower and middle thirds of the cell. Nuclei tend to befound in the middle third of the statocytes. Only the hyaloplasmis concentrated in the upper (i.e. ‘top’) thirdof Z. mays statocytes. When the sedimentation of amyloplasts(and the resulting exclusion of other organelles from the lowerthird of the cell) is corrected for, all cellular constituentsremain asymmetrically distributed within the cell. Therefore,the sedimentation of amyloplasts alone is not responsible forthe differential distribution of other cellular organelles inZ. mays statocytes. The quantitative ultrastructure of Z. maysstatocytes is discussed relative to the graviperceptive functionof these cells. Zea mays, corn, maize, root cap, stereology, columella, statocytes, graviperception, ultrastructure  相似文献   

14.
Amyloplasts are hypothesized to play a key role in the cellular mechanisms of gravity perception in plants. While previous studies have examined the effects of starch deficiency on gravitropic sensitivity, in this paper, we report on gravitropism in plants with a greater amount of starch relative to the normal wild type. Thus, we have studied the sex1 (starch excess) mutant of Arabidopsis thaliana, which accumulates extra starch because it is defective in a protein involved in the regulation of starch mobilization. Compared to the wild type (WT), sex1 seedlings contained excess starch in cotyledons, hypocotyls, the root-hypocotyl transition zone, the body of the root, root hairs, and in peripheral rootcap cells. Sedimented amyloplasts were found in both the WT and in sex1 in the rootcap columella and in the endodermis of stems, hypocotyls, and petioles. In roots, the starch content and amyloplast sedimentation in central columella cells and the gravitropic sensitivity were comparable in sex1 and the WT. However, in hypocotyls, the sex1 mutant was much more sensitive to gravity during light-grown conditions compared to the WT. This difference was correlated to a major difference in size of plastids in gravity-perceiving endodermal cells between the two genotypes (i.e., sex1 amyloplasts were twice as big). These results are consistent with the hypothesis that only very large changes in starch content relative to the WT affect gravitropic sensitivity, thus indicating that wild-type sensing is not saturated.  相似文献   

15.
In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts   总被引:4,自引:2,他引:2  
Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.  相似文献   

16.
MOORE  RANDY 《Annals of botany》1990,65(2):213-216
Columella cells of seedlings of Zea mays L. cv. Bear Hybridgrown in the microgravity of orbital flight allocate significantlylarger relative-volumes to hyaloplasm and lipid bodies, andsignificantly smaller relative-volumes to dictyosomes, plastids,and starch than do columella cells of seedlings grown at I g.The ultrastructure of columella cells of seedlings grown atI g and on a rotating clinostat is not significantly different.However, the ultrastructure of cells exposed to these treatmentsdiffers significantly from that of seedlings grown in microgravity.These results indicate that the actions of a rotating clinostatdo not mimic the ultrastructural effects of microgravity incolumella cells of Z. mays. Zea mays L., gravity, microgravity, ultrastructure, clinostat, space shuttle, space biology  相似文献   

17.
Utilization of storage starch in the cells of cotyledon mesophyll and root meristem in the course of alfalfa (Medicago sativa L.) seed germination on the solutions of NaCl, Na2SO4, and mannitol at different concentrations and identical osmotic pressure was investigated using the method of transmission electron microscopy. Ultrastructural analysis showed changes in the number of starch grains and deceleration of chloroplast development depending on the osmotic component of salt influence. At low concentrations corresponding to osmotic pressure of 202.6 kPa, Na2SO4 did not affect the formation of the photosynthetic machinery and utilization of starch inclusions; mannitol contributed to the preservation of considerable reserve of starch without disturbing the development of chloroplasts; NaCl did not inhibit the development of the photosynthetic machinery and induced an increase in the number of starch grains presumably at the expense of newly produced starch. When the concentration of the investigated substances increased up to the values corresponding to the osmotic pressure of 607.8 kPa, NaCl did not suppress transformation of amyloplasts into chloroplasts and utilization of starch; Na2SO4 inhibited the development of chloroplasts and starch utilization; mannitol decelerated transformation of amyloplasts and inhibited mobilization of starch grains. The obtained results make it possible to propose a method of preliminary estimation of tolerance of dicotyledons to abiotic stresses based on the cytological analysis of utilization of starch grains and formation of photosynthetic compartments of chloroplasts in the mesophyll of cotyledons.  相似文献   

18.
In order to quantify the ultrastructural changes associated with cellular differentiation, we have performed a morphometric analysis of the ultrastructure of the calyptrogen, columella, and peripheral cells of the root cap of Zea mays. The relative volumes of the nucleus, nucleolus, and mitochondria in the protoplasm gradually decrease as a cell moves through the root cap. The relative volume of plastids increases 240% during the differentiation of calyptrogen cells into columella cells. This increase is transient, however, since the relative volume of plastids as well as starch in plastids decreases markedly as columella cells differentiate into peripheral cells. Dictyosomes and spherosomes increase more gradually than plastids, peaking in relative volume in the innermost peripheral cells (PCI). The relative volume of the vacuome decreases as calyptrogen cells differentiate into columella cells, after which it increases during the differentiation of peripheral cells. By the time the outermost peripheral cells (PCIII) are sloughed from the cap, the relative volume of the vacuome has almost tripled. These results indicate that each cell type comprising the root cap of Zea mays is characterized by a distinctive ultrastructure. Furthermore, the ultrastructural changes associated with the differentiation of these cells are organelle specific. The results of this study are discussed relative to the function of the various cell types of the root cap.  相似文献   

19.
The root meristem of E. monosperma and E. chilensis possesses a central group of distinctive, large cells. These cells have large nuclei with scattered heterochromatin, proplastids with no starch, small vacuoles, mitochondria, few dictyosomes and endoplasmic reticulum cisternae, and lipid deposits. Over a 24 hr labelling period, the large cells fail to incorporate 3H-thymidine, whereas cells both distal and proximal to this region do. A quiescent center which includes these large cells is present therefore. Both species have an extensive root cap, the length being contributed by mitoses in many tiers of cells distal to the quiescent center. The root cap consists of a columella and peripheral regions. Distinctive amyloplasts, an increase in the number of endoplasmic reticulum cisternae and dictyosomes, large vacuoles, and lipid deposits are characteristic of differentiated columella cells. Peripheral cells elongate, lose most of their starch, and are eventually sloughed from the root.  相似文献   

20.
We have examined the effect of benzyladenine (BA) on amyloplast number and distribution in semithin cross-sections of excised watermelon ( Citrullus vulgaris Schrad ., cv. Fairfax) cotyledons grown in the dark. The sections were stained with Lugol solution and observed with an immersion objective. In control cotyledons, amyloplasts were always more abundant and contain more starch grains than in BA-treated cotyledons. The higher starch content was correlated with a higher ratio between starch synthetase (EC 2.4.1.21) and amylase (EC 3.2.1.1) activities in the controls. In the central zone of the mesophyll, the amyloplasts contained more starch grains than in the abaxial and adaxial (palisade) zones. The average number of amyloplasts per cell was different in the three zones, and followed a different time course in control and treated cotyledons. BA decreased this number, particularly in the adaxial zones. Our data seem to indicate a different function of starch in the central and in adaxial zone of the mesophyll. In the central zone starch is probably used as a source of carbohydrates for export to the embryo axis, while in the adaxial zone, where the transformation from amyloplast to etioplast is particularly pronounced, starch may be a reserve for organelle differentiation. BA stimulates the utilization of starch for both functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号