首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr), a commonly used indirect activator of AMP-activated protein kinase (AMPK), inhibits phosphatidylcholine (PC) biosynthesis in freshly isolated hepatocytes. In all nucleated mammalian cells, PC is synthesized from choline via the Kennedy (CDP-choline) pathway. The purpose of our study was to provide direct evidence that AMPK regulates phospholipid biosynthesis and to elucidate the mechanism(s) by which AMPK inhibits hepatic PC synthesis. Incubations of hepatocytes with AICAr resulted in a dose-dependent activation of AMPK and inhibition of PC biosynthesis. Surprisingly, adenoviral delivery of constitutively active AMPK did not alter PC biosynthesis. In addition, expression of dominant negative mutants of AMPK was unable to block the AICAr-dependent inhibition of PC biosynthesis, indicating that AICAr was acting independently of AMPK activation. Determination of aqueous intermediates of the CDP-choline pathway indicated that choline kinase, the first enzyme in the pathway, was inhibited by AICAr administration. Flux through the CDP-choline pathway was directly correlated to the level of intracellular ATP concentrations. Therefore, it is possible that inhibition of PC biosynthesis is another process by which the cell can reduce ATP consumption in times of energetic stress. However, unlike cholesterol and triacylglycerol biosynthesis, PC production is not regulated by AMPK.  相似文献   

2.
There is a paucity of information about phosphatidylcholine (PC) biosynthesis in bone formation. Thus, we characterized PC metabolism in both primary human osteoblasts (HOB) and human osteosarcoma MG-63 cells. Our results show that the CDP-choline pathway is the only de novo route for PC biosynthesis in both HOB and MG-63 cells. Both CK activity and CKα expression in MG-63 cells were significantly higher than those in HOB cells. Silencing of CKα in MG-63 cells had no significant effect on PC concentration but decreased the amount of phosphocholine by approximately 80%. The silencing of CKα also reduced cell proliferation. Moreover, pharmacological inhibition of CK activity impaired the mineralization capacity of MG-63 cells. Our data suggest that CK and its product phosphocholine are required for the normal growth and mineralization of MG-63 cells.  相似文献   

3.
Coordination of membrane lipid biosynthesis is important for cell function during plant growth and development. Here we summarize our recent work on PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) which suggests that this enzyme is a key regulator of phosphaticylcholine (PC) biosynthesis in Arabidopsis thaliana. Disruption of PAH activity elevates phosphatidic acid (PA) levels and stimulates PC biosynthesis and biogenesis of the endoplasmic reticulum (ER). Furthermore, the activity of PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE (CCT), which is the key enzyme controlling the rate of PC biosynthesis, is directly stimulated by PA and expression of a constitutively active version of CCT replicates the effects of PAH disruption. Hence PAH activity can control the abundance of PA, which in turn can modulate CCT activity to govern the rate of PC biosynthesis. Crucially it is not yet clear how PAH activity is regulated in Arabidopsis but there is evidence that PAH1 and PAH2 are both phosphorylated and further work will be required to investigate whether this is functionally significant.  相似文献   

4.
The origins and role of the Warburg effect have remained uncertain for many years. Two recent studies demonstrate that an embryonic- and cancer-cell-specific isoform of the enzyme pyruvate kinase M2 (PKM2) is regulated by binding to phospho-tyrosine motifs and promotes increased cell growth and tumor development. PKM2 enhances the use of glycolytic intermediates for macromolecular biosynthesis and tumor growth. These findings illustrate the distinct advantages of this metabolic phenotype in cancer cell growth.  相似文献   

5.
The enzyme choline kinase (CK), which catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP, has an essential role in the biosynthesis of phosphatidylcholine, the major constituent of all mammalian cell membranes. CK is encoded by two separate genes expressing the three isoforms CKα1, CKα2 and CKβ that are active as homodimeric or heterodimeric species. Metabolic changes observed in various cancer cell lines and tumors have been associated with differential and marked up-regulation of the CKα genes, and specific inhibition of CKα activity has been proposed as a potential anti-cancer strategy. As a result, less attention has been given to CKβ and its interaction with CKα. With the aim of profiling the intracellular roles of CKα and CKβ, we used RNA interference (RNAi) as a molecular approach to down-regulate the expression of CK in HeLa cells. Individual and simultaneous RNAi-based silencing of the CK α and β isoforms was achieved using different combinations of knockdown strategies. Efficient knockdown was confirmed by immunodetection using our isoform-specific antibodies and by quantitative real-time PCR. Our analyses of the phenotypic consequences of CK depletion showed the expected lethal effect of CKα knockdown. However, CKβ- and CKα +?CKβ-silenced cells had no aberrant phenotype. Therefore, our results support the hypothesis that the balance of the α and β isoforms is critical for cancer cell survival. The suppression of the cancer cell killing effect of CKα silencing by simultaneous knockdown of both isoforms implies that a more effective CK-based anti-cancer strategy can be achieved by reducing cross-reactivity with CKβ.  相似文献   

6.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

7.
Protein kinase CK2 (formerly casein kinase II) exhibits elevated expression in a variety of cancers, induces lymphocyte transformation in transgenic mice, and collaborates with Ha-Ras in fibroblast transformation. To systematically examine the cellular functions of CK2, human osteosarcoma U2-OS cells constitutively expressing a tetracycline-regulated transactivator were stably transfected with a bidirectional plasmid encoding either catalytic isoform of CK2 (i.e. CK2alpha or CK2alpha') together with the regulatory CK2beta subunit in order to increase the cellular levels of either CK2 isoform. To interfere with either CK2 isoform, cells were also transfected with kinase-inactive CK2alpha or CK2alpha' (i. e. GK2alpha (K68M) or CK2alpha'(K69M)) together with CK2beta. In these cells, removal of tetracycline from the growth medium stimulated coordinate expression of catalytic and regulatory CK2 subunits. Increased expression of active forms of CK2alpha or CK2alpha' resulted in modest decreases in cell proliferation, suggesting that optimal levels of CK2 are required for optimal proliferation. By comparison, the effects of induced expression of kinase-inactive CK2alpha differed significantly from the effects of induced expression of kinase-inactive CK2alpha'. Of particular interest is the dramatic attenuation of proliferation that is observed following induction of CK2alpha'(K69M), but not following induction of CK2alpha(K68M). These results provide evidence for functional specialization of CK2 isoforms in mammalian cells. Moreover, cell lines exhibiting regulatable expression of CK2 will facilitate efforts to systematically elucidate its cellular functions.  相似文献   

8.
Human fibroblasts in culture take up exogenous [choline-Me-3H,32P]sphingomyelin (SM) from the medium and incorporate it into cellular SM and phosphatidylcholine [Spence, Clarke & Cook (1983) J. Biol. Chem. 258, 8595-8600]. The ratio of [3H]choline/[32P]Pi is similar in SM and phosphatidylcholine, indicating that the phosphocholine (P-Cho) moiety is transferred intact. Similar results are obtained with Niemann-Pick (NP) cells which are deficient in lysosomal sphingomyelinase activity, suggesting that the P-Cho transfer may not be mediated by the lysosomal sphingomyelinase and that alternative pathways of sphingomyelin catabolism are present in cultured cells. In this study we have shown that: (1) the P-Cho pool in control and NP cells incubated with exogenous labelled SM has a specific radioactivity intermediate between that of SM and PtdCho; (2) expansion of the intracellular P-Cho pool by incubation with exogenous choline reduces the incorporation of [3H]choline from SM into PtdCho; and (3) incorporation of P-Cho from SM into PtdCho is decreased at the non-permissive temperature in Chinese hamster ovary cells with a temperature-sensitive mutation in the cytidylyltransferase reaction. These results suggest that incorporation of P-Cho from SM into PtdCho involves a reaction sequence in which P-Cho is hydrolysed from SM by a sphingomyelinase, followed by incorporation of P-Cho into PtdCho via the cytidine pathway of biosynthesis (SM----P-Cho----CDP-Cho----PtdCho). The appreciable incorporation of P-Cho from SM into PtdCho in sphingomyelinase-deficient NP cells suggests a more substantial or effective lysosomal sphingomyelinase activity in intact cells than is measured in vitro, and/or a significant contribution by other sphingomyelinase activities in these cells.  相似文献   

9.
Cytosolic HPPK/DHPS (cytHPPK/DHPS) in Arabidopsis is a functional enzyme with activity similar to its mitochondrial isoform. Genomic complementation of the cytHPPK/DHPS knockout mutant with the wild type gene led to a complete rescue of the stress sensitive mutant phenotype in seed germination tests under abiotic stress conditions. Moreover, over-expression of the gene resulted in higher germination rate under stress as compared to the wild-type, confirming its role in stress resistance. Analysis of folates in seedlings, inflorescence and dry seeds showed unchanged levels in the wild-type, mutant and over-expressor line, upon stress and normal conditions, suggesting a role for cytHPPK/DHPS distinct from folate biosynthesis and a folate-independent stress resistance mechanism. This apparently folate-independent mechanism of stress resistance points towards a possible role of pterins, since the product of HPPK/DHPS is dihydropteroate.  相似文献   

10.
Phosphatidylcholine and choline homeostasis   总被引:3,自引:0,他引:3  
Phosphatidylcholine (PC) is made in mammalian cells from choline via the CDP-choline pathway. Animals obtain choline primarily from the diet or from the conversion of phosphatidylethanolamine (PE) to PC followed by catabolism to choline. The main fate of choline is the synthesis of PC. In addition, choline is oxidized to betaine in kidney and liver and converted to acetylcholine in the nervous system. Mice that lack choline kinase (CK) alpha die during embryogenesis, whereas mice that lack CKbeta unexpectedly develop muscular dystrophy. Mice that lack CTP:phosphocholine cytidylyltransferase (CT) alpha also die during early embryogenesis, whereas mice that lack CTbeta exhibit gonadal dysfunction. The cytidylyltransferase beta isoform also plays a role in the branching of axons of neurons. An alternative PC biosynthetic pathway in the liver uses phosphatidylethanolamine N-methyltransferase to catalyze the formation of PC from PE. Mice that lack the methyltransferase survive but die from steatohepatitis and liver failure when placed on a choline-deficient diet. Hence, choline is an essential nutrient. PC biosynthesis is required for normal very low density lipoprotein secretion from hepatocytes. Recent studies indicate that choline is recycled in the liver and redistributed from kidney, lung, and intestine to liver and brain when choline supply is attenuated.  相似文献   

11.
Cytokinins (CKs) are a group of phytohormones that play a crucial role in the regulation of plant growth and development. Identification of the enzymes and the corresponding genes that are involved in CK metabolism allowed us to understand how plants synthesize CKs and adjust CK activity to optimal levels. A major accomplishment toward these goals was the identification of genes for the first enzyme in the CK biosynthetic pathway, adenosine phosphate-isopentenyltransferase (IPT). In Arabidopsis thaliana and Agrobacterium tumefaciens, detailed analyses of IPTs were conducted through not only enzymatic characterization but also molecular structural approaches. These studies revealed the molecular basis for the Agrobacterium-origin of IPT used for the efficient biosynthesis of trans-zeatin that promotes tumorigenesis in host plants. Another landmark in CK research was the identification of CYP735A as an enzyme that converts iP-nucleotide to tZ-nucleotide. Furthermore, the identification of a CK-activating enzyme, LOG, which catalyzes a novel activation pathway, is a remarkable recent achievement in CK research. Collectively, these advances have revealed the complexity of the entire metabolic scheme for CK biosynthesis.  相似文献   

12.
The mammalian ORMDL proteins are orthologues of the yeast Orm proteins (Orm1/2), which are regulators of ceramide biosynthesis. In mammalian cells, ceramide is a proapoptotic signaling sphingolipid, but it is also an obligate precursor to essential higher order sphingolipids. Therefore levels of ceramide are expected to be tightly controlled. We tested the three ORMDL isoforms for their role in homeostatically regulating ceramide biosynthesis in mammalian cells. Treatment of cells with a short chain (C6) ceramide or sphingosine resulted in a dramatic inhibition of ceramide biosynthesis. This inhibition was almost completely eliminated by ORMDL knockdown. This establishes that the ORMDL proteins mediate the feedback regulation of ceramide biosynthesis in mammalian cells. The ORMDL proteins are functionally redundant. Knockdown of all three isoforms simultaneously was required to alleviate the sphingolipid-mediated inhibition of ceramide biosynthesis. The lipid sensed by the ORMDL-mediated feedback mechanism is medium or long chain ceramide or a higher order sphingolipid. Treatment of permeabilized cells with C6-ceramide resulted in ORMDL-mediated inhibition of the rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase. This indicates that C6-ceramide inhibition requires only membrane-bound elements and does not involve diffusible proteins or small molecules. We also tested the atypical sphingomyelin synthase isoform, SMSr, for its role in the regulation of ceramide biosynthesis. This unusual enzyme has been reported to regulate ceramide levels in the endoplasmic reticulum. We were unable to detect a role for SMSr in regulating ceramide biosynthesis. We suggest that the role of SMSr may be in the regulation of downstream metabolism of ceramide.  相似文献   

13.
Choline kinase (CK) is the first-step regulatory enzyme for the biosynthesis of phosphatidylcholine in all mammalian cells. It exists as at least three isoforms (alpha1, alpha2 and beta) that are encoded by two separate genes termed ck-alpha and ck-beta. The active enzyme has been proposed to consist of either their homo- or hetero-dimeric forms. Here, we report on the identification of several essential domains and amino acid residues involved in their active dimer formation. Full-length cDNAs or their truncated or alanine-mutated versions for mouse CK-alpha1 and CK-beta tagged with either HA or Myc at their N-termini were expressed in COS-7 cells. Each dimer formation was analyzed by immuno-precipitation followed by Western blotting. Kinetic analysis for CK reaction was performed with different expression products. Both the N-terminal domain-1 and C-terminal portions (E424-K430 for CK-alpha1 and Q379-K385 for CK-beta) were shown to be critical for the formation of active homo- or hetero-dimer complex. Interestingly, D320 in the CK-motif of CK-alpha1 was found to be essential for alpha1/alpha1 homo-dimerization but not for alpha1/beta hetero-dimerization. A mutation of the corresponding D276 of CK-beta to A276 did not show any effect on either its homo- or hetero-dimerization but it caused a strong inhibition of CK activity in either case.  相似文献   

14.
Casein kinase 1 (CK1) is a family of multifunctional Ser/Thr protein kinases that are ubiquitous in eukaryotic cells. Recent studies have demonstrated the existence of, and role for, CK1 in protozoan parasites such as Leishmania, Plasmodium and Trypanosoma. The value of protein kinases as potential drug targets in protozoa is evidenced by the successful exploitation of cyclic guanosine monophosphate-dependent protein kinase (PKG) with selective tri-substituted pyrrole and imidazopyridine inhibitors. These compounds exhibit in vivo efficacy against Eimeria tenella in chickens and Toxoplasma gondii in mice. We now report that both of these protein kinase inhibitor classes inhibit the growth of Leishmania major promastigotes and Trypanosoma brucei bloodstream forms in vitro. Genome informatics predicts that neither of these trypanosomatids codes for a PKG orthologue. Biochemical studies have led to the unexpected discovery that an isoform of CK1 represents the primary target of the pyrrole and imidazopyridine kinase inhibitors in these organisms. CK1 from extracts of L. major promastigotes co-fractionated with [(3)H]imidazopyridine binding activity. Further purification of CK1 activity from L. major and characterization via liquid chromatography coupled tandem mass spectrometry identified CK1 isoform 2 as the specific parasite protein inhibited by imidazopyridines. L. major CK1 isoform 2 expressed as a recombinant protein in Escherichia coli displayed biochemical and inhibition characteristics similar to those of the purified native enzyme. The results described here warrant further evaluation of the activity of these kinase inhibitors against mammalian stage Leishmania parasites in vitro and in animal models of infection, as well as studies to genetically validate CK1 as a therapeutic target in trypanosomatid parasites.  相似文献   

15.
16.
17.
Mature retinal ganglion cells (RGCs) do not normally regenerate severed axons after optic nerve injury and show only little neurite outgrowth in culture. However, RGCs can be transformed into an active regenerative state after lens injury (LI) enabling these neurons to regrow axons in vitro and in vivo. In the current study we investigated the role of CK1δ and CK1ε activity in neurite outgrowth of LI stimulated RGCs and nerve growth factor (NGF) stimulated PC12 cells, respectively. In both cell types CK1δ and ε were localized in granular particles aligned at microtubules in neurites and growth cones. Although LI treatment did not measurably affect the expression of CK1δ and ε, it significantly elevated the specific kinase activity in the retina. Similarly, CK1δ/ε specific kinase activity was also elevated in NGF treated PC12 cells compared with untreated controls. Neurite extension in PC12 cells was associated with a change in the activity of CK1δ C-terminal targeting kinases, suggesting that activity of these kinases might be necessary for neurite outgrowth. Pharmacological inactivation of CK1δ and ε markedly compromised neurite outgrowth of both, PC12 cells and LI stimulated RGCs in a concentration dependent manner. These data provide evidence for a so far unknown, but essential role of CK1 isoforms in neurite growth.  相似文献   

18.
Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development.  相似文献   

19.
The discovery of the prohormone convertase (PC) family of enzymes has provided several good candidates (PC1, PC2, and PC5) for the enzymes responsible for the endoproteolytic cleavage of procholecystokinin (pro-CCK). Determination of the role of individual pro-hormone convertases in the processing of pro-CCK is complicated because several of these enzymes are found in endocrine tumor cells expressing CCK mRNA and in identified neurons in the brain. Production of active recombinant PC5 permits the determination of its ability to cleave substrates related to pro-CCK. Active PC5, secreted from baculovirus-infected Sf9 cells, was partially purified by ion-exchange chromatography. Western blot analysis confirmed the presence of the active form of the enzyme in infected cell media and its absence from uninfected cell media. The enzyme is most active at acidic pH 6.5 and is maximally activated by 5 mM calcium. PC5 was able to cleave both monobasic and dibasic substrates without a requirement for a basic residue at P-4 and it displayed a K(m) in the micromolar range. The enzyme was inhibited by EDTA, 1,10-phenanthroline, and p-CMS, as well as by two specific PC inhibitors. This is the first reported preparation of active recombinant PC5. Like the other members of its family, it has the correct catalytic characteristics in vitro to play a role in the processing of neuropeptide precursor proteins into their final bioactive forms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号