首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutations in either the myosin VA (GS1), RAB27A (GS2) or melanophilin (GS3) genes. The three GS subtypes are commonly characterized by pigment dilution of the skin and hair, due to defects involving melanosome transport in melanocytes. Here, we review how detailed studies concerning GS have contributed to a better understanding of the molecular mechanisms involved in vesicle transport and membrane trafficking processes. Additionally, we demonstrate that the identification and biological analysis of novel disease‐causing mutations highlighted the functional importance of the RAB27A‐MLPH‐MYO5A tripartite complex in intracellular melanosome transport. As the small GTPase Rab27a is able to interact with multiple effectors, including Slp2‐a and Myrip, we report on their presumed role in melanosome transport. Furthermore, we summarize data suggesting that RAB27B and RAB27A are functionally redundant and hereby provide further insight into the pathogenesis of GS2. Finally, we discuss how the gathered knowledge about the RAB27A‐MLPH‐MYO5A tripartite complex can be translated into a possible therapeutic application to reduce (hyper)pigmentation of the skin.  相似文献   

2.
The apical region of the retinal pigment epithelium (RPE) typically contains melanosomes. Their apical distribution is dependent on RAB27A and the unconventional myosin, MYO7A. Evidence from studies using in vitro binding assays, melanocyte transfection, and immunolocalization have indicated that the exophilin, MYRIP, links RAB27A on melanosomes to MYO7A, analogous to the manner that melanophilin links RAB27A on melanocyte melanosomes to MYO5A. To test the functionality of this hypothesis in RPE cells, we have examined the relationship among MYRIP, RAB27A and MYO7A with studies of RPE cells in primary culture (including live-cell imaging), analyses of mutant mouse retinas, and RPE cell fractionation experiments. Our results indicate that the retinal distribution of MYRIP is limited to the RPE, mainly the apical region. In RPE cells, RAB27A, MYRIP, and MYO7A were all associated with melanosomes, undergoing both slow and rapid movements. Analyses of mutant mice provide genetic evidence that MYRIP is linked to melanosomes via RAB27A, but show that recruitment of MYRIP to apical RPE is independent of melanosomes and RAB27A. RAB27A and MYRIP also associated with motile small vesicles of unknown origin. The present results provide evidence from live RPE cells that the RAB27A-MYRIP-MYO7A complex functions in melanosome motility. They also demonstrate that RAB27A provides an essential link to the melanosome.  相似文献   

3.
Rab27a plays a pivotal role in the transport of melanosomes to dendrite tips of melanocytes and mutations in RAB27A, which impair melanosome transport cause the pigmentary dilution and the immune deficiency found in several patients with Griscelli syndrome (GS). Interestingly, three GS patients present single homozygous missense mutations in RAB27A, leading to W73G, L130P, and A152P transitions that affect highly conserved residues among Rab proteins. However, the functional consequences of these mutations have not been studied. In the present report, we evaluated the effect of overexpression of these mutants on melanosome, melanophilin, and myosin-Va localization in B16 melanoma cells. Then we studied several key parameters for Rab27a function, including GTP binding and interaction with melanophilin/myosin-Va complex, which links melanosomes to the actin network. Our results showed that Rab27a-L130P cannot bind GTP, does not interact with melanophilin, and consequently cannot allow melanosome transport on the actin filaments. Interestingly, Rab27a-W73G binds GTP but does not interact with melanophilin. Thus, Rab27a-W73G cannot support the actin-dependent melanosome transport. Finally, Rab27a-A152P binds both GTP and melanophilin. However, Rab27a-A152P does not allow melanosome transport and acts as a dominant negative mutant, because its overexpression, in B16 melanoma cells, mimics a GS phenotype. Hence, the interaction of Rab27a with melanophilin/myosin-Va is not sufficient to ensure a correct melanosome transport. Our results pointed to an unexpected complexity of Rab27a function and open the way to the search for new Rab27a effectors or regulators that control the transport of Rab27a-dependent vesicles.  相似文献   

4.
Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. A single family whose members were compound heterozygotes for an anti-termination mutation of the stop codon c.619T > C (p.X207QextX20) and an inframe arginine deletion c.277_279 del (p.Arg93 del) were identified after direct gene sequencing and multiplex ligation-dependent probe amplification (MLPA) of a further 58 families. Nucleotide binding assays for RAB18(Leu24Gln) and RAB18(Arg93del) showed that these mutant proteins were functionally null in that they were unable to bind guanine. The clinical features of Warburg Micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and RAB18 mutations are indistinguishable, although the role of RAB18 in trafficking is still emerging, and it has not been linked previously to the RAB3 pathway. Knockdown of rab18 in zebrafish suggests that it might have a conserved developmental role. Our findings imply that RAB18 has a critical role in human brain and eye development and neurodegeneration.  相似文献   

5.
Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.  相似文献   

6.
The RAB27A/Melanophilin/Myosin-5a tripartite protein complex is required for capturing mature melanosomes in the peripheral actin network of melanocytes for subsequent transfer to keratinocytes. Mutations in any one member of this tripartite complex cause three forms of Griscelli syndrome (GS), each with distinct clinical features but with a similar cellular phenotype. To date, only one case of GS type III (GSIII), caused by mutations in the Melanophilin (MLPH) gene, has been reported. Here, we report seven new cases of GSIII in three distinct Arab pedigrees. All affected individuals carried a homozygous missense mutation (c.102C>T; p.R35W), located in the conserved Slp homology domain of MLPH, and had hypomelanosis of the skin and hair. We report the first cellular studies on GSIII melanocytes, which demonstrated that MLPH(R35W) causes perinuclear aggregation of melanosomes in melanocytes, typical for GS. Additionally, co-immunoprecipitation assays showed that MLPH(R35W) lost its interaction with RAB27A, indicating pathogenicity of the R35W mutation.  相似文献   

7.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

8.
Warburg Micro syndrome and Martsolf syndrome are clinically overlapping autosomal recessive conditions characterized by congenital cataracts, microphthalmia, postnatal microcephaly, and developmental delay. The neurodevelopmental and ophthalmological phenotype is more severe in Warburg Micro syndrome in which cerebral malformations and severe motor and mental retardation are common. While biallelic loss-of-function mutations in RAB3GAP1 are present in the majority of patients with Warburg Micro syndrome; a hypomorphic homozygous splicing mutation of RAB3GAP2 has been reported in a single family with Martsolf syndrome. Here, we report a novel homozygous RAB3GAP2 small in-frame deletion, c.499_507delTTCTACACT (p.Phe167_Thr169del) that causes Warburg Micro syndrome in a girl from a consanguineous Turkish family presenting with congenital cataracts, microphthalmia, absent visually evoked potentials, microcephaly, polymicrogyria, hypoplasia of the corpus callosum, and severe developmental delay. No RAB3GAP2 mutations were detected in ten additional unrelated patients with RAB3GAP1-negative Warburg Micro syndrome, consistent with further genetic heterogeneity. In conclusion, we provide evidence that RAB3GAP2 mutations are not specific to Martsolf syndrome. Rather, our findings suggest that loss-of-function mutations of RAB3GAP1 as well as functionally severe RAB3GAP2 mutations cause Warburg Micro syndrome while hypomorphic RAB3GAP2 mutations can result in the milder Martsolf phenotype. Thus, a phenotypic severity gradient may exist in the RAB3GAP-associated disease continuum (the “Warburg–Martsolf syndrome”) which is presumably determined by the mutant gene and the nature of the mutation.  相似文献   

9.
The function of lysosome-related organelles such as melanosomes in melanocytes, and lytic granules in cytotoxic T lymphocytes is disrupted in Griscelli syndrome and related diseases. Griscelli syndrome results from loss of function mutations in either the RAB27A (type 1 Griscelli syndrome) or MYO5A (type 2 Griscelli syndrome) genes. Melanocytes from Griscelli syndrome patients and respective murine models ashen (Rab27a mutant), dilute (myosin Va mutant), and leaden exhibit perinuclear clustering of melanosomes. Recent work suggests that Rab27a is required to recruit myosin Va to melanosomes, thereby tethering melanosomes to the peripheral actin network and promoting melanosome retention at the tips of melanocytic dendrites. Here, we characterize the function of the leaden gene product. We show that Rab27a, but not myosin Va, can be localized to melanosomes in leaden melanocytes, suggesting that the leaden gene product acts downstream of, or in parallel to, Rab27a in melanocytes to promote recruitment of myosin Va to melanosomes. We also observed reduced levels of myosin Va protein in leaden and ashen melanocytes, suggesting that myosin Va stability is influenced by the leaden and ashen gene products. In leaden cytotoxic T lymphocytes, we observed that lytic granules polarize towards the immunological synapse and kill target cells normally. However, in contrast to melanocytes, we found that neither the leaden gene product (melanophilin) nor myosin Va was detectable in cytotoxic T lymphocytes. These results suggest that Rab27a interacts with different classes of effector proteins in melanocytes and cytotoxic T lymphocytes.  相似文献   

10.
11.
12.
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.  相似文献   

13.
Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis--an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components--and provides a new molecular target for studies of obesity.  相似文献   

14.
15.
Usher syndrome type 1b (USH1B) is an autosomal recessive disorder characterized by congenital profound hearing loss, vestibular abnormalities, and retinitis pigmentosa. The disorder has recently been shown to be caused by mutations in the myosin VIIa gene (MYO7A) located on 11q14. In the current study, a panel of 189 genetically independent Usher I cases were screened for the presence of mutations in the N-terminal coding portion of the motor domain of MYO7A by heteroduplex analysis of 14 exons. Twenty-three mutations were found segregating with the disease in 20 families. Of the 23 mutations, 13 were unique, and 2 of the 13 unique mutations (Arg212His and Arg212Cys) accounted for the greatest percentage of observed mutant alleles (8/23, 31%). Six of the 13 mutations caused premature stop codons, 6 caused changes in the amino acid sequence of the myosin VIIa protein, and 1 resulted in a splicing defect. Three patients were homozygotes or compound heterozygotes for mutant alleles; these three cases were Tyr333Stop/Tyr333Stop, Arg212His-Arg302His/Arg212His-Arg302His, and IVS13nt-8c-->g/Glu450Gln. All the other USH1B mutations observed were simple heterozygotes, and it is presumed that the mutation on the other allele is present in the unscreened regions of the gene. None of the mutations reported here were observed in 96 unrelated control samples, although several polymorphisms were detected. These results add three patients to single case reported previously where mutations have been found in both alleles and raises the total number of unique mutations in MYO7A to 16.  相似文献   

16.
We identified 266 individuals with intragenic NSD1 mutations or 5q35 microdeletions encompassing NSD1 (referred to as "NSD1-positive individuals"), through analyses of 530 subjects with diverse phenotypes. Truncating NSD1 mutations occurred throughout the gene, but pathogenic missense mutations occurred only in functional domains (P < 2 x 10(-16)). Sotos syndrome was clinically diagnosed in 99% of NSD1-positive individuals, independent of the molecular analyses, indicating that NSD1 aberrations are essentially specific to this condition. Furthermore, our data suggest that 93% of patients who have been clinically diagnosed with Sotos syndrome have identifiable NSD1 abnormalities, of which 83% are intragenic mutations and 10% are 5q35 microdeletions. We reviewed the clinical phenotypes of 239 NSD1-positive individuals. Facial dysmorphism, learning disability, and childhood overgrowth were present in 90% of the individuals. However, both the height and head circumference of 10% of the individuals were within the normal range, indicating that overgrowth is not obligatory for the diagnosis of Sotos syndrome. A broad spectrum of associated clinical features was also present, the occurrence of which was largely independent of genotype, since individuals with identical mutations had different phenotypes. We compared the phenotypes of patients with intragenic NSD1 mutations with those of patients with 5q35 microdeletions. Patients with microdeletions had less-prominent overgrowth (P = .0003) and more-severe learning disability (P = 3 x 10(-9)) than patients with mutations. However, all features present in patients with microdeletions were also observed in patients with mutations, and there was no correlation between deletion size and the clinical phenotype, suggesting that the deletion of additional genes in patients with 5q35 microdeletions has little specific effect on phenotype. We identified only 13 familial cases. The reasons for the low vertical transmission rate are unclear, although familial cases were more likely than nonfamilial cases (P = .005) to carry missense mutations, suggesting that the underlying NSD1 mutational mechanism in Sotos syndrome may influence reproductive fitness.  相似文献   

17.
Branchio-oculo-facial syndrome (BOFS) is a rare autosomal-dominant cleft palate-craniofacial disorder with variable expressivity. The major features include cutaneous anomalies (cervical, infra- and/or supra-auricular defects, often with dermal thymus), ocular anomalies, characteristic facial appearance (malformed pinnae, oral clefts), and, less commonly, renal and ectodermal (dental and hair) anomalies. The molecular basis for this disorder is heretofore unknown. We detected a 3.2 Mb deletion by 500K SNP microarray in an affected mother and son with BOFS at chromosome 6p24.3. Candidate genes in this region were selected for sequencing on the basis of their expression patterns and involvement in developmental pathways associated with the clinical findings of BOFS. Four additional BOFS patients were found to have de novo missense mutations in the highly conserved exons 4 and 5 (basic region of the DNA binding domain) of the TFAP2A gene in the candidate deleted region. We conclude BOFS is caused by mutations involving TFAP2A. More patients need to be studied to determine possible genetic heterogeneity and to establish whether there are genotype-phenotype correlations.  相似文献   

18.
Hermansky-Pudlak syndrome (HPS) has evolved into a group of genetically distinct disorders characterized by oculocutaneous albinism, a storage pool deficiency, and impaired formation or trafficking of intracellular vesicles. HPS-1 results from mutations in the HPS1 gene and affects approximately 400 individuals in northwest Puerto Rico due to a 16-bp duplication in exon 15. Another 13 mutations have been reported in non-Puerto Ricans. HPS1 codes for a 79.3 kDa cytoplasmic protein of unknown function. HPS-1 patients typically develop fatal pulmonary fibrosis in their fourth decade. HPS-2 is caused by mutations in ADTB3A, which codes for the beta3A subunit of the adaptor protein-3 complex, AP3. This coat protein complex has been localized to the TGN as well as to a peripheral endosomal compartment. Evidence indicates that AP3 plays a role in the stepwise process of vesicular trafficking which leads to formation of the melanosomal, platelet dense body and lysosomal compartments. All three known HPS-2 patients had childhood neutropenia and infections. HPS-3 results from mutations in HPS3 and affects central Puerto Ricans homozygous for a 3904-bp deletion removing exon 1. At least 8 non-Puerto Rican patients have other HPS3 mutations, including an IVS5+1G->A splicing mutation in five Ashkenazi Jewish patients. HPS3 codes for a 113.7 kDa protein of unknown function. HPS-3 manifests with mild hypopigmentation and bleeding. All types of HPS are diagnosed by whole mount electron microscopic demonstration of absent platelet dense bodies, and molecular diagnoses are available for the Puerto Rican HPS1 and HPS3 founder mutations. Mouse and Drosophila models provide candidates for new genes causing HPS in humans. These genes will reveal the pathways by which specialized vesicles of lysosomal lineage arise within cells.  相似文献   

19.
The Prader-Willi syndrome (PWS) is a developmental disorder caused by a deficiency of paternal contributions, arising from differently sized deletions, uniparental disomy or rare imprinting mutations, in the chromosome region 15q11–q13. We studied 41 patients with suspected PWS and their parents using cytogenetic and molecular techniques. Of the 27 clinically typical PWS patients, 23 (85%) had a molecular deletion that could be classified into four size categories. Only 15 of them (71%) could be detected cytogenetically. Maternal uniparental heterodisomy was observed in four cases. The rest of the patients showed no molecular defects including rare imprinting mutations. In our experience, the use of the methylation test with the probe PW71 (D15S63), together with the probe hN4HS (SNRPN), which distinguishes between a deletion and uniparental disomy, is the method of choice for the diagnosis of PWS.  相似文献   

20.
We identified a homozygous missense mutation in the noncatalytic subunit (RAB3GAP2) of RAB3GAP that results in abnormal splicing in a family with congenital cataracts, hypogonadism, and mild mental retardation (Martsolf syndrome). Recently, mutations in the catalytic subunit of RAB3GAP (RAB3GAP1), a key regulator of calcium-mediated hormone and neurotransmitter exocytosis, were reported in Warburg micro syndrome, a severe neurodevelopmental condition with overlapping clinical features. RAB3GAP is a heterodimeric protein that consists of a catalytic subunit and a noncatalytic subunit encoded by RAB3GAP1 and RAB3GAP2, respectively. We performed messenger RNA-expression studies of RAB3GAP1 and RAB3GAP2 orthologues in Danio rerio embryos and demonstrated that, whereas developmental expression of rab3gap1 was generalized (similar to that reported elsewhere in mice), rab3gap2 expression was restricted to the central nervous system. These findings are consistent with RAB3GAP2 having a key role in neurodevelopment and may indicate that Warburg micro and Martsolf syndromes represent a spectrum of disorders. However, we did not detect RAB3GAP2 mutations in patients with Warburg micro syndrome. These findings suggest that RAB3GAP dysregulation may result in a spectrum of phenotypes that range from Warburg micro syndrome to Martsolf syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号