首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Possible roles of the Glu40-Ser48 loop connecting A domain and the first transmembrane helix (M1) in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) were explored by mutagenesis. Deletions of any single residues in this loop caused almost complete loss of Ca(2+)-ATPase activity, while their substitutions had no or only slight effects. Single deletions or substitutions in the adjacent N- and C-terminal regions of the loop (His32-Asn39 and Leu49-Ile54) had no or only slight effects except two specific substitutions of Asn39 found in SERCA2b in Darier's disease pedigrees. All the single deletion mutants for the Glu40-Ser48 loop and the specific Asn39 mutants formed phosphoenzyme intermediate (EP) from ATP, but their isomeric transition from ADP-sensitive EP (E1P) to ADP-insensitive EP (E2P) was almost completely or strongly inhibited. Hydrolysis of E2P formed from Pi was also dramatically slowed in these deletion mutants. On the other hand, the rates of the Ca(2+)-induced enzyme activation and subsequent E1P formation from ATP were not altered by the deletions and substitutions. The results indicate that the Glu40-Ser48 loop, with its appropriate length (but not with specific residues) and with its appropriate junction to A domain, is a critical element for the E1P to E2P transition and formation of the proper structure of E2P, therefore, most likely for the large rotational movement of A domain and resulting in its association with P and N domains. Results further suggest that the loop functions to coordinate this movement of A domain and the unique motion of M1 during the E1P to E2P transition.  相似文献   

2.
Functional roles of seven hydrophobic residues on the interface between the actuator (A) and phosphorylation (P) domains of sarcoplasmic reticulum Ca2+-ATPase were explored by alanine and serine substitutions. The residues examined were Ile179/Leu180/Ile232 on the A domain, Val705/Val726 on the P domain, and Leu119/Tyr122 on the loop linking the A domain and M2 (the second transmembrane helix). These residues gather to form a hydrophobic cluster around Tyr122 in the crystal structures of Ca2+-ATPase in Ca2+-unbound E2 (unphosphorylated) and E2P (phosphorylated) states but are far apart in those of Ca2+-bound E1 (unphosphorylated) and E1P (phosphorylated) states. The substitution-effects were also compared with those of Ile235 on the A domain/M3 linker and those of T181GE of the A domain, since they are in the immediate vicinity of the Tyr122-cluster. All these substitutions almost completely inhibited ATPase activity without inhibiting Ca2+-activated E1P formation from ATP. Substitutions of Ile235 and T181GE blocked the E1P to E2P transition, whereas those in the Tyr122-cluster blocked the subsequent E2P hydrolysis. Substitutions of Ile235 and Glu183 also blocked EP hydrolysis. Results indicate that the Tyr122-cluster is formed during the E1P to E2P transition to configure the catalytic site and position Glu183 properly for hydrolyzing the acylphosphate. Ile235 on the A domain/M3 linker likely forms hydrophobic interactions with the A domain and thereby allowing the strain of this linker to be utilized for large motions of the A domain during these processes. The Tyr122-cluster, Ile235, and T181GE thus seem to have different roles and are critical in the successive events in processing phosphorylated intermediates to transport Ca2+.  相似文献   

3.
The functional importance of the length of the A/M1 linker (Glu(40)-Ser(48)) connecting the actuator domain and the first transmembrane helix of sarcoplasmic reticulum Ca(2+)-ATPase was explored by its elongation with glycine insertion at Pro(42)/Ala(43) and Gly(46)/Lys(47). Two or more glycine insertions at each site completely abolished ATPase activity. The isomerization of phosphoenzyme (EP) intermediate from the ADP-sensitive form (E1P) to the ADP-insensitive form (E2P) was markedly accelerated, but the decay of EP was completely blocked in these mutants. The E2P accumulated was therefore demonstrated to be E2PCa(2) possessing two occluded Ca(2+) ions at the transport sites, and the Ca(2+) deocclusion and release into lumen were blocked in the mutants. By contrast, the hydrolysis of the Ca(2+)-free form of E2P produced from P(i) without Ca(2+) was as rapid in the mutants as in the wild type. Analysis of resistance against trypsin and proteinase K revealed that the structure of E2PCa(2) accumulated is an intermediate state between E1PCa(2) and the Ca(2+)-released E2P state. Namely in E2PCa(2), the actuator domain is already largely rotated from its position in E1PCa(2) and associated with the phosphorylation domain as in the Ca(2+)-released E2P state; however, in E2PCa(2), the hydrophobic interactions among these domains and Leu(119)/Tyr(122) on the top of second transmembrane helix are not yet formed properly. This is consistent with our previous finding that these interactions at Tyr(122) are critical for formation of the Ca(2+)-released E2P structure. Results showed that the EP isomerization/Ca(2+)-release process consists of the following two steps: E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+); and the intermediate state E2PCa(2) was identified for the first time. Results further indicated that the A/M1 linker with its appropriately short length, probably because of the strain imposed in E2PCa(2), is critical for the correct positioning and interactions of the actuator and phosphorylation domains to cause structural changes for the Ca(2+) deocclusion and release.  相似文献   

4.
Solubilized Ca2+-ATPase (SSR) was prepared by solubilizing fragmented sarcoplasmic reticulum (FSR) with a nonionic detergent (C12E8) then displacing the detergent with Tween 80, using a DEAE-cellulose column. The kinetic properties of the phosphorylated intermediate (EP) formed by the reaction of SSR with ATP were compared with those of EP formed by the reaction with Pi. The time course of decay of E32P formed with 4 microM AT32P in the presence of 19 mM CaCl2 and 10 mM MgCl2 (forward reaction) was measured by adding 0.4 mM unlabeled ATP and 10 mM Pi at pH 6.0 and 30 degrees C. The rate of E32P decay was accelerated by 0.4 mM ADP. On the other hand, when the time course of decay of E32P formed with 10 mM 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2 (backward reaction) was measured by adding 0.4 mM unlabeled ATP and 15 mM CaCl2, the rate of E32P decay was unaffected by 0.4 mM ADP. AT32P was produced on adding ADP to E32P formed with AT32P in the presence of 10 mM CaCl2 and 10 mM MgCl2, while no AT32P was produced on adding ADP to E32P formed with 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2, even when 15 mM CaCl2 was added simultaneously with ADP.  相似文献   

5.
Point mutants with alterations to amino acid residues Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed by transient kinetic measurements. In the Ca(2+)-ATPase crystal structures, most of these residues participate in a hydrogen-bonding network between the phosphorylation domain (domain P), the third transmembrane helix (M3), and the cytoplasmic loop connecting the sixth and the seventh transmembrane helices (L6-7). In several of the mutants, a pronounced phosphorylation "overshoot" was observed upon reaction of the Ca(2+)-bound enzyme with ATP, because of accumulation of dephosphoenzyme at steady state. Mutations of Glu(340) and its partners, Thr(247) and Arg(822), in the bonding network markedly slowed the Ca(2+) binding transition (E2 --> E1 --> Ca(2)E1) as well as Ca(2+) dissociation from Ca(2+) site II back toward the cytosol but did not affect the apparent affinity for vanadate. These mutations may have caused a slowing, in both directions, of the conformational change associated directly with Ca(2+) interaction at Ca(2+) site II. Because mutation of Asp(813) inhibited the Ca(2+) binding transition, but not Ca(2+) dissociation, and increased the apparent affinity for vanadate, the effect on the Ca(2+) binding transition seems in this case to be exerted by slowing the E2 --> E1 conformational change. Because the rate was not significantly enhanced by a 10-fold increase of the Ca(2+) concentration, the slowing is not the consequence of reduced affinity of any pre-binding site for Ca(2+). Furthermore, the mutations interfered in specific ways with the phosphoenzyme processing steps of the transport cycle; the transition from ADP-sensitive phosphoenzyme to ADP-insensitive phosphoenzyme (Ca(2)E1P --> E2P) was accelerated by mutations perturbing the interactions mediated by Glu(340) and Asp(813) and inhibited by mutation of Pro(248), and mutations of Thr(247) induced charge-specific changes of the rate of dephosphorylation of E2P.  相似文献   

6.
Disulfide-containing peptides in pepsin digest of sarcoplasmic reticulum vesicles were identified by using a fluorogenic thiol-specific reagent 4-fluoro-7-sulfamoylbenzofurazan and a reductant tributylphosphine. Sequencing of the purified peptides revealed the presence of a Cys(876)-Cys(888) disulfide bond on the luminal loop connecting the 7th and 8th transmembrane helices (loop 7-8) of the Ca(2+)-ATPase (SERCA1a). We substituted either or both of these cysteine residues with alanine and made three mutants (C876A, C888A, C876A/C888A), in which the disulfide bond is disrupted. The mutants and the wild type were expressed in COS-1 cells, and functional analysis was performed with the microsomes isolated from the cells. Electrophoresis performed under reducing and non-reducing conditions confirmed the presence of Cys(876)-Cys(888) disulfide bond in the expressed wild type. All the three mutants possessed high Ca(2+)-ATPase activity. In contrast, no Ca(2+) transport activity was detected with these mutants. These mutants formed almost the same amount of phosphoenzyme intermediate as the wild type from ATP and from P(i). Detailed kinetic analysis showed that the three mutants hydrolyze ATP in the mechanism well accepted for the Ca(2+)-ATPase; activation of the catalytic site upon high affinity Ca(2+) binding, formation of ADP-sensitive phosphoenzyme, subsequent rate-limiting transition to ADP-insensitive phosphoenzyme, and hydrolysis of the latter phosphoenzyme. It is likely that the pathway for delivery of Ca(2+) from the binding sites into the lumen of vesicles is disrupted by disruption of the Cys(876)-Cys(888) disulfide bond, and therefore that the loop 7-8 having the disulfide bond is important for formation of the proper structure of the Ca(2+) pathway.  相似文献   

7.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
After treatment of sarcoplasmic reticulum Ca(2+)-ATPase with proteinase K (PK) in the presence of Ca(2+) and a protecting non-phosphorylated ligand (e.g. adenosine 5'-(beta,gamma-methylenetriphosphate), we were able to prepare in high yield an ATPase species that only differs from intact ATPase because of excision of the MAATE(243) sequence from the loop linking the A domain with the third transmembrane segment. The PK-treated ATPase was unable to transport Ca(2+) and to catalyze ATP hydrolysis, but it could bind two calcium ions with high affinity and react with ATP to form a classical ADP-sensitive phosphoenzyme, Ca(2)E1P, with occluded Ca(2+). The ability of Ca(2)E1P to become converted to the Ca(2+)-free ADP-insensitive form, E2P, was strongly reduced, as was the ability of PK-treated ATPase to react with orthovanadate or to form an E2P intermediate from inorganic phosphate in the absence of Ca(2+). PK-treated ATPase also reacted with thapsigargin to form a complex with altered properties, and the tryptic cleavage "T2" site in the A domain was no longer protected in the absence of Ca(2+). It is probable that disrupting the C-terminal link of the A domain with the transmembrane region severely compromises reorientation of A and P domains and the functionally critical cross-talk of these domains with the membrane-bound Ca(2+) ions.  相似文献   

9.
Site-specific mutagenesis of the sarcoplasmic reticulum Ca(2+)-ATPase was used to investigate the functional roles of 18 amino acid residues located at or near the "hinge-domain," a highly conserved region of the cation-transporting ATPases. Mutation of Lys684 to arginine, alanine, histidine, and glutamine resulted in complete loss of calcium transport function and ATPase activity. For the Lys684----Ala, histidine, and glutamine mutants, this coincided with a loss of the ability to form a phosphorylated intermediate from ATP or Pi. The Lys684----Arg mutant retained the ability to phorphorylate from ATP with normal apparent affinity, demonstrating the importance of the positive charge. On the other hand, no phosphorylation was observed with Pi as substrate in this mutant. Examination of the partial reactions after phosphorylation from ATP in the Lys684----Arg mutant demonstrated a reduction of the rate of transformation of the ADP-sensitive phosphoenzyme intermediate (E1P) to the ADP-insensitive phosphoenzyme intermediate (E2P), which could account for the loss of transport function. Once accumulated, the E2P intermediate was able to decompose rapidly in the presence of K+ at neutral pH. These results may be interpreted in terms of a preferential destabilization of protein phosphate interactions in the E2P form of this mutant. The Asp703----Ala and Asn-Asp707----Ala-Ala mutants were completely inactive and unable to form phosphoenzyme intermediates from ATP or Pi. In these mutants as well as in the Lys684----Ala mutant, nucleotides were found to protect with normal affinity against intramolecular cross-linking induced with glutaraldehyde, indicating that the nucleotide binding site was intact. Mutation of Glu646, Glu647, Asp659, Asp660, Glu689, Asp695, Glu696, Glu715, and Glu732 to alanine did not affect the maximum rates of calcium transport and ATP hydrolysis or the apparent affinities for calcium and ATP. Mutation of the 2 highly conserved proline residues, Pro681 and Pro709, as well as Lys728, to alanine resulted in partially inhibited Ca(2+)-ATPase enzymes with retention of the ability to form a phosphoenzyme intermediate from ATP or Pi and with normal apparent affinities for ATP and calcium. The proline mutants retained the biphasic ATP concentration dependence of ATPase activity, characteristic of the wild-type, and therefore the partial inhibition of turnover could not be ascribed to a disruption of the low affinity modulatory ATP site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
ATP plays dual roles in the reaction cycle of the sarcoplasmic reticulum Ca2+-ATPase by acting as the phosphorylating substrate as well as in nonphosphorylating (modulatory) modes accelerating conformational transitions of the enzyme cycle. Here we have examined the involvement of actuator domain residues Arg174, Ile188, Lys204, and Lys205 by mutagenesis. Alanine mutations to these residues had little effect on the interaction of the Ca2E1 state with nucleotide or on the HnE 2 to Ca2E1 transition of the dephosphoenzyme. The phosphoenzyme processing steps, Ca2E1P to E2P and E2P dephosphorylation, and their stimulation by MgATP/ATP were markedly affected by mutations to Arg174, Ile188, and Lys205. Replacement of Ile188 with alanine abolished nucleotide modulation of dephosphorylation but not the modulation of the Ca2E1P to E2P transition. Mutation to Arg174 interfered with nucleotide modulation of either of the phosphoenzyme processing steps, indicating a significant overlap between the modulatory nucleotide-binding sites involved. Mutation to Lys205 enhanced the rates of the phosphoenzyme processing steps in the absence of nucleotide and disrupted the nucleotide modulation of the Ca2E1P to E2P transition. Remarkably, the mutants with alterations to Lys205 showed an anomalous inhibition by ATP of the dephosphorylation, and in the alanine mutant the affinity for the inhibition by ATP was indistinguishable from that for stimulation by ATP of the wild type. Hence, the actuator domain is an important player in the function of ATP as modulator of phosphoenzyme processing, with Arg174, Ile188, and Lys205 all being critically involved, although in different ways. The data support a variable site model for the modulatory effects with the nucleotide binding somewhat differently in each of the conformational states occurring during the transport cycle.  相似文献   

11.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

12.
In the preceding paper, we suggested that 1 mol Ca(2+)-ATPase of sarcoplasmic reticulum (SR) contains 0.5 ml of high-affinity vanadate binding sites as well as 0.5 ml of low-affinity vanadate binding sites [Yamasaki, K. & Yamamoto, T. (1991) J. Biochem. 110, 915-921]. In the present study, we examined the effects of vanadate binding to the high- and low-affinity sites upon phosphorylation of the enzyme by inorganic phosphate (Pi). When vanadate was added to the reaction medium in which the Ca(2+)-ATPase had been phosphorylated by Pi in the absence of Ca2+, the steady-state level of phosphoenzyme (E2P) decreased due to inhibition of its formation. The decrease of E2P after addition of vanadate exhibited biphasic kinetics consisting of an initial fast decay process followed by a slower first-order decay process. The size of the fast E2P decay, which was estimated by extrapolating the slow phase decay to time 0, varied depending on the vanadate concentration with a dissociation constant of 17 microM, and reached maximum at 50 microM vanadate. The maximum value of the fast E2P decay was almost equal to the initial E2P level. The initial fast decay of E2P was competitively prevented by Pi with a dissociation constant of 7.4 mM, which was very close to Km for the E2P formation under similar conditions. These observations suggested that vanadate inhibits E2P formation by competition with Pi at a phosphorylation site on the Ca(2+)-ATPase. The slow first-order decay of E2P corresponded well to the vanadate binding to the high-affinity site of the Ca(2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We characterized the interaction of 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) with the sarcoplasmic reticulum (SR) Ca(2+)-ATPase from rabbit fast-twitch skeletal and canine cardiac muscles by examining the effect of this agent on the ATPase reaction. tBuBHQ at less than 10 microM inhibited ATP hydrolysis by both isoforms of Ca(2+)-ATPase by up to 80 and 90%, respectively. The half maximal inhibition of these enzymes was observed at about 1.5 microM tBuBHQ. Thus, this agent potently inhibits the fast-twitch skeletal and slow-twitch skeletal/cardiac isoforms of SR Ca(2+)-ATPase. tBuBHQ at 5-10 microM inhibited the rate of decomposition of the phosphoenzyme intermediate (EP), measured as a ratio between ATPase activity and the EP level in the steady state, by 35-40%. It also inhibited formation of EP by decreasing the rate of Ca2+ binding to the Ca(2+)-deficient, nonphosphorylated enzyme to about 1/8 of the control value. These results indicate that tBuBHQ has at least two sites of action in the reaction sequence for the SR Ca(2+)-ATPase.  相似文献   

14.
T Wang 《Biochemistry》1987,26(25):8360-8365
A five-syringe quench-flow apparatus was used in the transient-state kinetic study of intermediary phosphoenzyme (EP) decomposition in a Triton X-100 purified dog cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase at 20 degrees C. Phosphorylation of the enzyme by ATP in the presence of 100 mM K+ for 116 ms gave 32% ADP-sensitive E1P, 52% ADP- and K+-reactive E2P, and 16% unreactive residual EPr. The EP underwent a monomeric, sequential E1P 17 s-1----E2P 10.5 s-1----E2 + Pi transformation and decomposition in the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid quenched Ca2+-devoid medium. The calculated rate constant for the total EP (i.e., E1P + E2P) dephosphorylation was 7.8 s-1. The E1P had an affinity for ADP with an apparent Kd congruent to 100 microM. When the EP was formed in the absence of K+ for 116 ms, no appreciable amount of the ADP-sensitive E1P was detected. The EP comprised about 80% ADP- and K+-reactive E2P and 20% residual EPr, suggesting a rapid E1P----E2P transformation. Both the E2P's formed in the presence and absence of K+ decomposed with a rate constant of about 19.5 s-1 in the presence of 80 mM K+ and 2 mM ADP, showing an ADP enhancement of the E2P decomposition. The results demonstrate mechanistic differences in monomeric EP transformation and decomposition between the Triton X-100 purified cardiac SR Ca2+-ATPase and deoxycholate-purified skeletal enzyme [Wang, T. (1986) J. Biol. Chem. 261, 6307-6319].  相似文献   

15.
Site-specific mutagenesis was used to replace Gly310, Gly770, and Gly801, located in the transmembrane domain of the sarcoplasmic reticulum Ca(2+)-ATPase, with either alanine or valine. In addition, Gly310 was substituted with proline. In the Gly310----Ala mutant, the Vmax for Ca2+ transport and ATPase activity was reduced to about 40% of the wild type activity, but the apparent Ca2+ affinity was close to normal. The Gly310----Val and Gly310----Pro mutants were devoid of Ca2+ transport or ATPase activity and displayed more than a 20-fold reduction in the apparent Ca2+ affinities measured in the phosphorylation assays with either ATP or Pi. In these mutants, the rate of phosphoenzyme hydrolysis was reduced, and the ADP-insensitive phosphoenzyme intermediate accumulated. The apparent affinity for Pi was increased in the absence, but not in the presence, of dimethyl sulfoxide. The properties of this new class of Ca(2+)-ATPase mutants ("E2/E2P" type) are consistent with a conformational state in which the protein-phosphate interaction is stabilized and the Ca(2+)-protein interaction is destabilized. The Gly770----Ala mutant transported Ca2+ with a Vmax close to that of the wild type, but displayed more than a 20-fold reduction of apparent Ca2+ affinity. The Gly770----Val mutant was not phosphorylated from either ATP or Pi. The Gly801----Ala mutant transported Ca2+ with a Vmax of 126% that of the wild type, hydrolyzed ATP at the same Vmax as the wild type in the presence of calcium ionophore, and displayed a 3-fold reduction in apparent Ca2+ affinity. The Gly801----Val mutant was unable to transport Ca2+ and to be phosphorylated from ATP, even at a Ca2+ concentration of 1 mM, but Ca2+ in the micromolar range inhibited phosphorylation from Pi. The ability to bind ATP with normal affinity was retained. The properties of this mutant are consistent with a disruption of one of the two Ca2+ binding sites required for phosphorylation with ATP.  相似文献   

16.
Frank K  Tilgmann C  Shannon TR  Bers DM  Kranias EG 《Biochemistry》2000,39(46):14176-14182
Phospholamban is an inhibitor of the sarcoplasmic reticulum Ca(2+) transport apparent affinity for Ca(2+) in cardiac muscle. This inhibitory effect of phospholamban can be relieved through its phosphorylation or ablation. To better characterize the regulatory mechanism of phospholamban, we examined the initial rates of Ca(2+)-uptake and Ca(2+)-ATPase activity under identical conditions, using sarcoplasmic reticulum-enriched preparations from phospholamban-deficient and wild-type hearts. The apparent coupling ratio, calculated by dividing the initial rates of Ca(2+) transport by ATP hydrolysis, appeared to increase with increasing [Ca(2+)] in wild-type hearts. However, in the phospholamban-deficient hearts, this ratio was constant, and it was similar to the value obtained at high [Ca(2+)] in wild-type hearts. Phosphorylation of phospholamban by the catalytic subunit of protein kinase A in wild-type sarcoplasmic reticulum also resulted in a constant value of the apparent ratio of Ca(2+) transported per ATP hydrolyzed, which was similar to that present in phospholamban-deficient hearts. Thus, the inhibitory effects of dephosphorylated phospholamban involve decreases in the apparent affinity of sarcoplasmic reticulum Ca(2+) transport for Ca(2+) and the efficiency of this transport system at low [Ca(2+)], both leading to prolonged relaxation in myocytes.  相似文献   

17.
In recent years crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a), stabilized in various conformations with nucleotide and phosphate analogs, have been obtained. However, structural analysis of mutant forms would also be valuable to address key mechanistic aspects. We have worked out a procedure for affinity purification of SERCA1a heterologously expressed in yeast cells, producing sufficient amounts for crystallization and biophysical studies. We present here the crystal structures of two mutant forms, D351A and P312A, to address the issue whether the profound functional changes seen for these mutants are caused by major structural changes. We find that the structure of P312A with ADP and AlF(4)(-) bound (3.5-A resolution) and D351A with AMPPCP or ATP bound (3.4- and 3.7-A resolution, respectively) deviate only slightly from the complexes formed with that of wild-type ATPase. ATP affinity of the D351A mutant was very high, whereas the affinity for cytosolic Ca(2+) was similar to that of the wild type. We conclude from an analysis of data that the extraordinary affinity of the D351A mutant for ATP is caused by the electrostatic effects of charge removal and not by a conformational change. P312A exhibits a profound slowing of the Ca(2+)-translocating Ca(2)E1P-->E2P transition, which seems to be due to a stabilization of Ca(2)E1P rather than a destabilization of E2P. This can be accounted for by the strain that the Pro residue induces in the straight M4 helix of the wild type, which is removed upon the replacement of Pro(312) with alanine in P312A.  相似文献   

18.
We studied binding of ATP and of the ATP analogs adenosine 5'-(beta,gamma-methylene)triphosphate (AMPCP) and beta,gamma-imidoadenosine 5'-triphosphate (AMPPNP) to the Ca(2+)-ATPase of the sarcoplasmic reticulum membrane (SERCA1a) with time-resolved infrared spectroscopy. In our experiments, ATP reacted with ATPase which had AMPPCP or AMPPNP bound. These experiments monitored exchange of ATP analog by ATP and phosphorylation to the first phosphoenzyme intermediate Ca(2)E1P. These reactions were triggered by the release of ATP from caged ATP. Only small differences in infrared absorption were observed between the ATP complex and the complexes with AMPPCP and AMPPNP indicating that overall the interactions between nucleotide and ATPase are similar and that all complexes adopt a closed conformation. The spectral differences between ATP and AMPPCP complex were more pronounced at high Ca(2+) concentration (10 mM). They are likely due to a different position of the gamma-phosphate which affects the beta-sheet in the P domain.  相似文献   

19.
The mechanism of ATP modulation of E2P dephosphorylation of sarcoplasmic reticulum Ca(2+)-ATPase wild type and mutant forms was examined in nucleotide binding studies of states analogous to the various intermediates of the dephosphorylation reaction, obtained by binding of metal fluorides, vanadate, or thapsigargin. Wild type Ca(2+)-ATPase displays an ATP affinity of 4 μM for the E2P ground state analog, 1 μM for the E2P transition state and product state analogs, and 11 μM for the E2 dephosphoenzyme. Hence, ATP binding stabilizes the transition and product states relative to the ground state, thereby explaining the accelerating effect of ATP on dephosphorylation. Replacement of Phe(487) (N-domain) with serine, Arg(560) (N-domain) with leucine, or Arg(174) (A-domain) with alanine or glutamate reduces ATP affinity in all E2/E2P intermediate states. Alanine substitution of Ile(188) (A-domain) increases the ATP affinity, although ATP acceleration of dephosphorylation is disrupted, thus indicating that the critical role of Ile(188) in ATP modulation is mechanistically based rather than being associated with the binding of nucleotide. Mutants with alanine replacement of Lys(205) (A-domain) or Glu(439) (N-domain) exhibit an anomalous inhibition by ATP of E2P dephosphorylation, due to ATP binding increasing the stability of the E2P ground state relative to the transition state. The ATP affinity of Ca(2)E2P, stabilized by inserting four glycines in the A-M1 linker, is similar to that of the E2P ground state, but the Ca(2+)-free E1 state of this mutant exhibits 3 orders of magnitude reduction of ATP affinity.  相似文献   

20.
Liu M  Barth A 《Biophysical journal》2003,85(5):3262-3270
Infrared spectroscopy was used to monitor the conformational change of 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) binding to the sarcoplasmic reticulum Ca(2+)-ATPase. TNP-AMP binding was observed in a competition experiment: TNP-AMP is initially bound to the ATPase but is then replaced by beta,gamma-iminoadenosine 5'-triphosphate (AMPPNP) after AMPPNP release from P(3)-1-(2-nitrophenyl)ethyl AMPPNP (caged AMPPNP). The resulting infrared difference spectra are compared to those of AMPPNP binding to the free ATPase, to obtain a difference spectrum that reflects solely TNP-AMP binding to the Ca(2+)-ATPase. TNP-AMP used as an ATP analog in the crystal structure of the sarcoplasmic reticulum Ca(2+)-ATPase was found to induce a conformational change upon binding to the ATPase. It binds with a binding mode that is different from that of AMPPNP, ATP, and other tri- and diphosphate nucleotides: TNP-AMP binding causes partially opposite and smaller conformational changes compared to ATP or AMPPNP. The conformation of the TNP-AMP ATPase complex is more similar to that of the E1Ca(2) state than to that of the E1ATPCa(2) state. Regarding the use of infrared spectroscopy as a technique for ligand binding studies, our results show that infrared spectroscopy is able to distinguish different binding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号