首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Somatic excision of the Mu1 transposable element of maize.   总被引:7,自引:1,他引:7       下载免费PDF全文
The Mu transposons of the Robertsons's Mutator transposable element system in maize are unusual in many respects, when compared to the other known plant transposon systems. The excision of these elements occurs late in somatic tissues and very rarely in the germ line. Unlike the other plant transposons, there is no experimental evidence directly linking Mu element excision and integration. We have analyzed the excision products generated by a Mu1 transposon inserted into the bronze 1 locus of maize. We find that the excision products or 'footprints' left by the Mu1 element resemble those of the other plant transposable elements, rather than those of the animal transposable element systems. We also find some novel types of footprints resembling recombinational events. We suggest that the Mu1 element can promote intrachromosomal crossovers and conversions near its site of insertion, and that this may be another mechanism by which transposons can accelerate the evolution of genomes.  相似文献   

4.
There is a 36 bp tract of extreme homopurine/homopyrimidine (PuPy) asymmetry in the maize Adh1 gene promoter (from –44 to –79) that is S1-hypersensitive in plasmids under supercoil tension. Oligodeoxynucleotides corresponding to the PuPy tract were designed to examine the secondary structure of the region and address the possible role of the tract in gene regulation. On the basis of oligodeoxynucleotide band-shift and DNase I footprinting analyses, it was concluded that the homopyrimidine oligodeoxynucleotide can form a triple helix with the duplex PuPy tract in vitro. Transient assays in protoplasts, suspension cells, and seedling roots show that the homopyrimidine oligodeoxynucleotide is also capable of repressing Adh1-GUS gene expression during co-transformation, presumably by the formation of a triple helix with the PuPy tract in vivo. The complementary homopurine oligodeoxynucleotide would not form a triple helix in vitro, nor would it repress Adh1-GUS in vivo. We propose that triple helix formation is a potential regulatory phenomenon in vivo, and that an intraregion triple helix could occur within the Adh1 promoter via the formation of H-DNA.  相似文献   

5.
6.
The functional properties of the anaerobic responsive element (ARE) of the maize Adh1 gene have been analysed using a transient expression assay in electroporated maize protoplasts. The ARE functions in both orientations although inversion of the ARE sequence relative to the TATA box element produces slightly weaker promoter activity under anaerobic conditions and elevated expression under aerobic conditions. Promoter activity under anaerobic conditions is proportional to the number of complete ARE sequences in the Adh1 promotor. The ARE contains two sub-regions and dimers of sub-region II are as efficient as the wild-type sequence in activating gene expression under anaerobic conditions. However, sub-region I dimers do not appear capable of inducing gene expression in response to anaerobic stress. We conclude that sub-region II is essential for anaerobic induction of gene expression. Reporter gene expression remains constant when the spacing between sub-regions of the ARE is increased up to at least 64 bp, but increased spacing of 136 bp or greater abolishes expression in both aerobic and anaerobic conditions, indicating that a close association of the two sub-regions is required both for anaerobic responsiveness and for maximal levels of aerobic gene expression. When the ARE is placed upstream of position –90 of the CaMV 35S promoter, the ARE produces a high level of expression in both aerobic and anaerobic conditions. The general enhancement of gene expression driven by the hybrid ARE/35S promoter in aerobic conditions requires an intact sub-region II motif since mutation or deletion of sub-region II from the hybrid promoter reduces the level of expression to that observed for the truncated 35S promoter alone. In addition, mutation of the sub-region I sequences in the ARE/35S hybrid promoter does not significantly reduce expression in aerobic conditions, relative to pARE/35S(-90), suggesting that sub-region I does not contribute to this general enhancer function.  相似文献   

7.
《Plant science》1987,48(3):165-173
The maize transposable element Mu1 was transferred to Arabidopsis thaliana by Ti plasmid-mediated transformation and a fertile line containing Mu1 was regenerated. Southern analysis of transformed tissue indicated that the Mu1 DNA remained entirely within a segment of T-DNA during three sexual generations. The results of a search for spontaneous mutations in a large number of Mu1-containing seedlings suggests that the presence of Mu1 did not cause a major increase in the spontaneous mutation frequency.  相似文献   

8.
9.
Nucleotide sequence of the maize transposable element Mul   总被引:34,自引:5,他引:34       下载免费PDF全文
A cloned DNA fragment from the maize allele Adhl-S3034 contains all of Mul, an insertion element involved in Robertson's Mutator activity. The element is 1367 base pairs (bp) long and is flanked by nine bp direct repeats of insertion site DNA. It has inverted terminal repeats of 215 and 213 bp showing 95% homology. Within the element are two direct repeats of 104 bp showing 96% homology. Four open reading frames (ORFs) were found, two in each DNA strand. Mul can be divided into two halves, each containing one terminal inverted repeat, an internal direct repeat, and two overlapping ORFs. The GC content of each half is high (70%), while that of a central 60 base portion of the element is low (26%). The central region contains the only sequence resembling the TAATA Goldberg and Hogness eukaryotic promoter signal. Multiple copies of DNA sequences related to Mul found in Mutator maize plants are generally similar in organization to the cloned element. A larger version containing a discrete 300 to 400 base pair insertion was found in some Mutator lines.  相似文献   

10.
The chromatin structure of a portion of yeast transposable elements known to be responsible for regulation of the expression of the adjacent HIS4 gene has been investigated, using the nuclease probe micrococcal nuclease. Yeast strains containing Ty917 or derivatives of this element that possess either a His-, weak His+, or strong His+ phenotype were examined. The chromatin at the Ty/HIS4 junction region was accessible to micrococcal nuclease. A partial nucleosome ladder was observed upon digestion with micrococcal nuclease indicating the presence of three phased nucleosomes located in Ty sequences upstream of the HIS4 gene. Phased nucleosomes could not be detected upstream of the HIS4 gene in wild-type cells. These data suggest that nucleosomal structure is not a major contributor to Ty917-regulated adjacent gene expression at HIS4.  相似文献   

11.
A modifier of the Bg autonomous element of the Bg-rbg system of transposable elements has been found in the genotype of the inbred maize line 346. In the presence of this modifier (designated Mbg), the frequency of reversion of mutable allele o2-lf in combination with the Bg-lf element increases by 7–24 times. An increase in the Mbg dosage by three times increases the o2-lf reversion frequency by a factor of about two. The joint presence of Mbg and Bg-lf in the same genotype before meiosis is necessary for the expression of the Mbg modifying effect. The possible nature and mechanism of action of the novel modifier are discussed.  相似文献   

12.
Koterniak VV 《Genetika》2006,42(2):185-191
A modifier of the Bg autonomous element of the Bg-rbg system of transposable elements has been found in the genotype of the inbred maize strain 346. In the presence of this modifier (termed Mbg), the frequency of reversion of mutable allele o2-lf in combination with the Bg-lf element increases by 7-24 times. An increase in the Mbg dosage by three times increases the o2-lf reversion frequency by a factor of about two. The presence of Mbg and Bg-lf in the same genotype before meiosis is necessary for the expression of the Mbg modifying effect. The possible nature and mechanism of action of the novel modifier are discussed.  相似文献   

13.
14.
15.
16.
Lazarow K  Du ML  Weimer R  Kunze R 《Genetics》2012,191(3):747-756
Activator/Dissociation (Ac/Ds) transposable elements from maize are widely used as insertional mutagenesis and gene isolation tools in plants and more recently also in medaka and zebrafish. They are particularly valuable for plant species that are transformation-recalcitrant and have long generation cycles or large genomes with low gene densities. Ac/Ds transposition frequencies vary widely, however, and in some species they are too low for large-scale mutagenesis. We discovered a hyperactive Ac transposase derivative, AcTPase(4x), that catalyzes in the yeast Saccharomyces cerevisiae 100-fold more frequent Ds excisions than the wild-type transposase, whereas the reintegration frequency of excised Ds elements is unchanged (57%). Comparable to the wild-type transposase in plants, AcTPase(4x) catalyzes Ds insertion preferentially into coding regions and to genetically linked sites, but the mutant protein apparently has lost the weak bias of the wild-type protein for insertion sites with elevated guanine-cytosine content and nonrandom protein-DNA twist. AcTPase(4x) exhibits hyperactivity also in Arabidopsis thaliana where it effects a more than sixfold increase in Ds excision relative to wild-type AcTPase and thus may be useful to facilitate Ac/Ds-based insertion mutagenesis approaches.  相似文献   

17.
18.
J I Yoder 《The Plant cell》1990,2(8):723-730
We have found that the maize transposable element Activator (Ac) can rapidly proliferate when transformed into tomato plants. The fate of transposed Ac elements in self-pollinated progeny of independent transgenic tomato plants was examined by DNA gel blot hybridizations. When a single copy of Ac was introduced into a transformant, the number of copies usually remained low in subsequent generations. In one lineage, however, the number of Ac elements increased from one to more than 15 copies in only two generations. DNA gel blot analyses indicated that the amplified elements were not grossly rearranged. Amplified copies of Ac resided at unique sites in the genome, and segregation analysis indicated that these sites were not tightly linked at one genetic locus. Taken together, these observations indicate that the mechanism of Ac amplification is associated with transposition.  相似文献   

19.
Summary The maize mutable allele bz-m2 (Ac), which arose from insertion of the 4.6 kb Ac element in the bz (bronze) locus, gives rise to stable bz (bz-s) derivatives that retain an active Ac element closely linked to bz. In the derivative bz-s:2114 (Ac), the Ac element is recombinationally inseparable from bz and transposes to unlinked sites at a frequency similar to that in the progenitor allele bzm2 (Ac). Both alleles have been cloned and sequenced. The bz-s:2114 (Ac) mutation retains Ac at the original site of insertion, but has lost a 789 pb upstream bz sequence adjacent to the insertion, hence the stable phenotype. The 8 bp target site direct repeat flanking the Ac insertion in the bz-m2 (Ac) allele is deleted in bz-s: 2114 (Ac), yet the Ac element is not impaired in its ability to transpose. The only functional Ac element in bz-s:2114 (Ac) is the one at the bz locus: in second-cycle derivatives without Ac activity, the loss of Ac activity correlated with the physical loss of the Ac element from the bz locus. The deletion endpoint in bz-s: 2114 (Ac) corresponds exactly with the site of insertion of a Ds element in a different bz mutation, which suggests that there may be preferred integration sites in the genome and that the deletion originated as the consequence of an abortive transposition event. Finally, we report two errors in the published Ac sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号