共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of Ni2+, Co2+, and Mn2+ on human serum butyrylcholinesterase (BChE, acylcholine acylhydrolase E.C. 3.1.1.8) were investigated in this study. Inhibition kinetics of BChE were studied using butyrylthiocholine (BTCh) as substrate. The "1/v" versus "1/[BTCh]" plots in the absence (control plot) and in the presence of the metal ions intersected above 1/[BTCh]-axis for all trace elements. In addition, when the concentrations of the cations were increased at 4 mM BTCh, velocities decreased and drove to zero at high concentrations of the trace elements. These results demonstrate that Ni2+, Co2+, and Mn2+ are linear mixed-type inhibitors of BChE. alphaK(i) values have been determined as 53.20 mM,152.25 mM, and 190.24 mM for Ni2+, Mn2+, and Co2+, respectively, by using nonlinear regression analysis. From the comparison of alphaK(i) values of the trace elements, it can be said that BChE has more affinty to binding Ni2+ than Co2+ and Mn2+. 相似文献
2.
Reaction centers (RCs) from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26.1 were depleted of Fe by a simple procedure involving reversible dissociation of the H subunit. The resulting intact Fe-depleted RCs contained 0.1-0.2 Fe per RC as determined from atomic absorption and electron paramagnetic resonance (EPR) spectroscopy. Fe-depleted RCs that have no metal ion occupying the Fe site differed from native RCs in the following respects: (1) the rate of electron transfer from QA- to QB exhibited nonexponential kinetics with the majority of RCs having a rate constant slower by only a factor of approximately 2, (2) the efficiency of light-induced charge separation (DQA----D+QA-) produced by a saturating flash decreased to 63%, and (3) QA appeared readily reducible to QA2-. Various divalent metal ions were subsequently incorporated into the Fe site. The electron transfer characteristics of Fe-depleted RCs reconstituted with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ were essentially the same as those of native RCs. These results demonstrate that neither Fe2+ nor any divalent metal ion is required for rapid electron transfer from QA- to QB. However, the presence of a metal ion in the Fe site is necessary to establish the characteristic, native, electron-transfer properties of QA. The lack of a dominant role of Fe2+ or other divalent metals in the observed rate of electron transfer from QA- to QB suggests that a rate-limiting step (for example, a protonation event or a light-induced structural change) precedes electron transfer. 相似文献
3.
Merce AL Landaluze JS Mangrich AS Szpoganicz B Sierakowski MR 《Bioresource technology》2001,76(1):29-37
The main interest in the biopolymer arabinogalactan is that it is edible. Complementing its high protein percentage, when complexed to essential metal ions, widens the use in food and pharmacology industries and technologies. The binding constants of Co2+, Cu2+, Mn2+ and Ni2+ with arabinogalactan, extracted from the leaves of Pereskia aculeata from Brazil were determined by potentiometric titrations and also the speciation according to pH values. The complexed species proposed by potentiometric titrations and the unique complexing ability of galacturonic acid groups towards Cu2+ and Ni2+ in the tridimensional web structure of arabinogalactan were confirmed by IR and EPR spectroscopies. The thermal stability of the complexed species also varied with the metal ion employed in the complexation when compared to the biopolymer alone. These complexes are new sources of additives for the food and pharmacology industries and carriers of essential metal ions to animal and vegetal biochemistry. 相似文献
4.
The transport of Zn2+, Co2+ and Ni2+ into yeast cells 总被引:10,自引:0,他引:10
5.
Growth characteristics and corrinoid production of Methanosarcina barkeri on methanol-acetate medium
《Journal of Fermentation and Bioengineering》1991,71(1):28-34
Methanosarcina barkeri strain Fusaro was grown on a mixed substrate medium of methanol and acetate. When 50 mM of acetate was added to the methanol basal medium (250 mM), the rates of methane production, methanol consumption, cell growth and corrinoid production were stimulated 3.2, 2.7, 3.5, and 2.4 times, respectively compared with those in methanol alone. Addition of acetate also has significant influence on corrinoid distribution decreasing the intracellular corrinoid content from 6.8 to 3.0 mg/g dry cell and increasing the extracellular corrinoid concentration from 4.0 to 5.4 mg/l. The carbon balance analysis for methanogenesis and cellular growth with or without acetate addition revealed that about 50% of the utilized acetate carbon might be incorporated in the cellular materials and the remaining might be oxidized to generate the electrons which stimulate the methanol reduction to methane, accelerating the metabolic activities of the methanogenesis from methanol consequently enhancing the rates of methane and corrinoid production, and cell growth. 相似文献
6.
Methanosarcina barkeri strain 227 produced ethane during growth on H2/CO2 when ethanol was added to the medium in concentrations of 89–974 mM; ethane production varied from 14 to 38 nmoles per tube (20 ml gas phase, 5.7 ml liquid) with increasing ethanol concentrations. Cells grown to mid-logarithmic phase (A600 0.46, protein = 64 g/ml) on H2/CO2, thoroughly flushed with H2/CO2, then exposed to ethanol, produced maximal ethane levels (at 585 and 974 mM ethanol) of about 215 nmoles per tube, with an ethane/methane ratio of 1×10-3. Mid-logarithmic-phase cultures of Methanosarcina barkeri strain Fusaro also produced ethane (up to 20 nmoles per tube) when exposed to ethanol. Cultures of strain 227 growing on methanol in the absence of H2 produced 6 nmoles per tube of ethane when supplemented with ethanol whereas those lacking ethanol but containing H2 and/or methanol produced 1.6 nmoles per tube. Cultures of Methanococcus deltae strains LH and RC, Methanospirillum hungatei or Methanobacterium thermoautotrophicum produced 5 nmoles ethane per tube when grown in medium containing ethanol. Ethanol concentrations of 177–886 mM were inhibitory to growth of all methanogens examined. Production of ethane by Methanosarcina was inhibited by >62 mM methanol, and both methanogenic inhibitors tested, CCl4 and Br–CH2–CH2–SO
inf3
sup-
, inhibited ethane and methane production concurrently. The data suggest that ethanol is converted to ethane by Methanosarcina species using the terminal portion of the methanol-to-methane pathway. 相似文献
7.
Complexes formed by reduced glutathione (GSH) with metal cations (Cr2+, Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Hg2+) were systematically investigated by the density functional theory (DFT). The results showed that the interactions of the metal cations with GSH resulted in nine different stable complexes and many factors had an effect on the binding energy. Generally, for the same period of metal ions, the binding energies ranked in the order of Cu2+>Ni2+>Co2+>Fe2+>Cr2+>Zn2+>Mn2+; and for the same group of metal ions, the general trend of binding energies was Zn2+>Hg2+>Cd2+. Moreover, the amounts of charge transferred from S or N to transition metal cations are greater than that of O atoms. For Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+ and Hg2+ complexes, the values of the Wiberg bond indices (WBIs) of M-S (M denotes metal cations) were larger than that of M-N and M-O; for Cr2+ complexes, most of the WBIs of M-O in complexes were higher than that of M-S and M-N. Furthermore, the changes in the electron configuration of the metal cations before and after chelate reaction revealed that Cu2+, Ni2+,Co2+ and Hg2+ had obvious tendencies to be reduced to Cu+,Ni+,Co+ and Hg+ during the coordination process. 相似文献
8.
Concentrations of 0.5% O2 immediately inhibited CH4 production from methanol by Methanosarcina barkeri. Simultaneously, the redox potential of the medium increased to about +100 mV. However, the rates of CH4 production were not significantly affected, when the redox potential of an anoxic medium was adjusted to values between -420 mV and +100 mV by addition of titanium (III) citrate, sodium dithionite, flavin adenine dinucleotide, or sodium ascorbate. When the redox potential was adjusted to values between -80 mV and +550 mV by means of mixtures of ferrocyanide and ferricyanide, CH4 production was not inhibited until a redox potential of about +420 mV was reached. M. barkeri was able to reduce 0.5 mM ferricyanide solution at +430 mV within <30 min to a value of about +50 mV, and then to start CH4 production. Higher ferricyanide concentrations were only partially reduced. The extent of reduction of ferricyanide was also dependent on the substrate concentration (methanol) and the density of the bacterial suspension. The results show that M. barkeri was able to generate to a certain extent by itself the redox environment which suited the production of CH4. However, the bacteria probably have not enough reducing power to decrease the redox potential below the critical level of +50 mV, if O2 is present at concentrations >0.005%. 相似文献
9.
Fixation of molecular nitrogen by Methanosarcina barkeri 总被引:1,自引:0,他引:1
Abstract Methanosarcina barkeri cells were observed in ammonia-free anaerobic acetate enrichments for sulfate-reducing bacteria. The capacity of Methanosarcina to grow diazotrophically was proved with a pure culture in mineral media with methanol. The cell yields with N2 or NH4 + ions as nitrogen source were 2.2 g and 6.1 g dry weight, respectively, per mol of methanol. Growth experiments with 15 N2 revealed that 84% of the cell nitrogen was derived from N2 . Acetylene was highly toxic to Methanosarcina and only reduced at concentrations lower than 100 μmol dissolved per 1 of medium. Assimilation of N2 and reduction of acetylene were inhibited by NH4 + ions. The experiments show that N2 fixation occurs not only in eubacteria but also in archaebacteria. The ecological significance of diazotrophic growth of Methanosarcina is discussed. 相似文献
10.
E.F. Khalil T.N. Whitmore H. Gamel-El-Din A. El-Bassel D. Lloyd 《FEMS microbiology letters》1989,57(3):313-316
Abstract both growth and methanogenesis of Methanosarcina barkeri are completely inhibited by sodium dodecylbenzene sulphonate at between 15 and 20 mg·1−1 . At lower concentrations growth of cultures was delayed, but no uncoupling of methanogenesis from growth was observed. Higher concentrations of detergent (50 mg·1−1 ) produced marked alterations in the surface structures of organisms observed in scanning electron micrographs. Thus levels of a detergent common in anaerobic sewage treatment plants can inhibit methanogenesis, the terminal stage in the anaerobic digestion process. 相似文献
11.
The Spirulina platensis biomass was characterized for its metal accumulation as a function of pH, external metal concentration, equilibrium isotherms, kinetics, effect of co-ions under free (living cells, lyophilized, and oven-dried) and immobilized (Ca-alginate and polyacrylamide gel) conditions. The maximum metal biosorption by S. platensis biomass was observed at pH 6.0 with free and immobilized biomass. The studies on equilibrium isotherm experiments showed highest maximum metal loading by living cells (181.0 +/- 13.1 mg Co(2+)/g, 272.1 +/- 29.4 mg Cu(2+)/g and 250.3 +/- 26.4 mg Zn(2+)/g) followed by lyophilized (79.7 +/- 9.6 mg Co(2+)/g, 250.0 +/- 22.4 mg Cu(2+)/g and 111.2 +/- 9.8 mg Zn(2+)/g) and oven-dried (25.9 +/- 1.9 mg Co(2+)/g, 160.0 +/- 14.2 mg Cu(2+)/g and 35.1 +/- 2.7 mg Zn(2+)/g) biomass of S. platensis on a dry weight basis. The polyacrylamide gel (PAG) immobilization of lyophilized biomass found to be superior over Ca-alginate (Ca-Alg) and did not interfere with the S. platensis biomass biosorption capacity, yielding 25% of metal loading after PAG entrapment. The time-dependent metal biosorption in both the free and immobilized form revealed existence of two phases involving an initial rapid phase (which lasted for 1-2 min) contributing 63-77% of total biosorption, followed by a slower phase that continued for 2 h. The metal elution studies conducted using various reagents showed more than 90% elution with mineral acids, calcium salts, and Na(2)EDTA with free (lyophilized or oven-dried) as well as immobilized biomass. The experiments conducted to examine the suitability of PAG-immobilized S. platensis biomass over multiple cycles of Co(2+), Cu(2+), and Zn(2+) sorption and elution showed that the same PAG cubes can be reused for at least seven cycles with high efficiency. 相似文献
12.
During growth of Methanosarcina barkeri strain Fusaro on a mixture of trimethylamine and acetate, methane production and acetate consumption were biphasic. In the first phase trimethylamine (33 mmol x l-1) was depleted and some acetate (11–14 from 50 mmol x l-1) was metabolized simultaneously. In the second phase the remaining acetate was cleaved stoichiometrically into CH4 and CO2. Kinetic experiments with (2-14C)acetate revealed that only 2.5% of the methane produced in the first phase originated from acetate: 18% of the acetate metabolized was cleaved into CH4 and CO2, 23% of the acetate was oxidized, and 55% was assimilated. Methane produced from CD3–COOH in the first phase consisted of CD2H2 and CD3H in a ratio of 1:1. 相似文献
13.
Effect of Octamethylcyclotetrasiloxane on Methylation of Bismuth by Methanosarcina barkeri 下载免费PDF全文
Octamethylcyclotetrasiloxane (OMCTS), a common constituent of household products, triggers the transformation of bismuth to the volatile toxic derivative trimethylbismuth by Methanosarcina barkeri, which is a representative member of the sewage sludge microflora. Comparative studies with the ionophores monensin and lasalocid, which induce effects similar to those observed for OMCTS, indicated that the stimulation of bismuth methylation is not specific for the siloxane and suggested that the stimulation observed is mainly due to facilitated membrane permeation of the metal ion. 相似文献
14.
In cell extracts of Methanosarcina barkeri, the methylcoenzyme M methylreductase system with H2 as the electron donor was inhibited by NAD+ and NADP+, but NADH and NADPH had no effect on enzyme activity. NAD+ (4 and 8 mM) shifted the saturation curve for methylcoenzyme M from hyperbolic (Hill coefficient [nH] = 1.0; concentration of substrate giving half maximal velocity [Km] = 0.21 mM) to sigmoidal (nH = 1.5 and 2.0), increased Km (Km = 0.25 and 0.34 mM), and slightly decreased Vmax. Similarly NADP+ at 4m and 8 mM increased nH to 1.6 and 1.85 respectively, but the Km values (0.3 and 0.56 mM) indicated that NADP+ was a more efficient inhibitor than NAD+. 相似文献
15.
Octamethylcyclotetrasiloxane (OMCTS), a common constituent of household products, triggers the transformation of bismuth to the volatile toxic derivative trimethylbismuth by Methanosarcina barkeri, which is a representative member of the sewage sludge microflora. Comparative studies with the ionophores monensin and lasalocid, which induce effects similar to those observed for OMCTS, indicated that the stimulation of bismuth methylation is not specific for the siloxane and suggested that the stimulation observed is mainly due to facilitated membrane permeation of the metal ion. 相似文献
16.
17.
Abstract The effect of cadmium (Cd) on methane formation from methanol and/or H2 –CO2 by Methanosarcina barkeri was examined in a defined growth medium and in a simplified buffer system containing 50 mM Tes with or without 2 mM dithiothreitol (DTT). No inhibition of methanogenesis by high concentrations of cadmium was observed in growth medium. Similarly, little inhibition of methanogenesis by whole cells in the Tes buffer system was observed in the presence of 430 μM Cd or 370 μM mercury (Hg) with 2 mM DTT. When the concentration of DTT was reduced to 0.4 mM, almost complete inhibition of methanogenesis from H2 –CO2 and methanol by 600 μM Cd was observed. In the absence of DTT, 150 μM Cd inhibited methanogenesis from H2 –CO2 completely and from methanol by 97%. Methanogenesis from H2 –CO2 was more sensitive to Cd than that from methanol. 相似文献
18.
Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 mM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site. 相似文献
19.
《Journal of Fermentation Technology》1988,66(1):123-126
The effect of Eh on the methanogenesis of methanol by Methanosarcina barkeri strain Fusaro was studied in pH-controlled anaerobic batch cultures at 37°C, in which the Eh of the culture medium was controlled by the addition of Ti(III)-citrate at values ranging from −340 to −520 mV. The changes in Eh revealed that the specific growth rate, μ, specific methane production rate, QCH4 and growth yield, YX/S were optimum under an Eh between −430 and −520 mV, while they decreased at the higher Eh of −340 mV. The maximum values of QCH4 and μ under the optimum Eh condition were 210 ml CH4/g dry cell weight·h−1 and 0.11 h−1, respectively. 相似文献
20.
Summary Optimal growth of Methanosarcina barkeri occurred in a defined medium containing methanol when 2.5–4 mM sodium sulphide was added giving a concentration of 0.04–0.06 mM dissolved sulphide (HS–+S2–. When the sulphide concentration was too low for optimal growth (e.g., 0.1 mM Na2S added) the addition of the redox resin Serdoxit acted as a sulphide reservoir and caused a significant stimulation of growth. Furthermore it could be demonstrated that iron sulphide, zinc sulphide or L-methionine could also act as sulphur sources while the addition of sodium sulphate to sulphide-depleted media failed to restore growth. The amino acid L-cysteine (0.85 mM) stimulated growth but could not replace Na2S.Under optimal cysteine-and sulphide concentrations the generation time of this strain was about 7–9 h during growth on methanol, giving a growth yield of about 0.14 g/g methanol consumed. Different M. barkeri strains were also able to grow under these conditions on acetate (30–50 h doubling time) without a significant lag-phase and with complete substrate consumption even though the inoculum was grown on methanol or H2–CO2. When methanol and acetate were present as a mixture in the medium both were used simultaneously. 相似文献