首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA elements with the CC(A/T)6GG, or CArG, motif occur in promoters that are under different regulatory controls. CArG elements from the skeletal actin, c-fos, and myogenin genes were tested for their abilities to confer tissue-specific expression on reporter genes when the individual elements were situated immediately upstream from a TATA element. The c-fos CArG element, also referred to as the serum response element (SRE), conferred basal, constitutive expression on the test promoter. The CArG motif from the myogenin gene was inactive. The skeletal actin CArG motif functioned as a muscle regulatory element (MRE) in that basal expression was detected only in muscle cultures. Muscle-specific expression from the 28-bp MRE and the 2.3-kb skeletal actin promoter was trans repressed by the Fos and Jun proteins. The expression and factor-binding properties of a series of synthetic CArG elements were analyzed. Muscle-specific expression was conferred by perfect 28-bp palindromes on the left and right halves of the skeletal actin MRE. Chimeric elements of the skeletal actin MRE and the c-fos SRE differed in their expression properties. Muscle-specific expression was observed when the left half of the MRE was fused to the right half of the SRE. Constitutive expression was conferred by a chimera with the right half of the MRE fused to the left half of the SRE and by chimeras which exchanged the central CC(A/T)6GG sequences. At least three distinct proteins specifically bound to these CArG elements. The natural and synthetic CArG elements differed in their affinities for these proteins; however, muscle-specific expression could not be attributed to differences in the binding of a single protein. Furthermore, the MRE did not bind MyoD or the myogenin-E12 heterodimer, indicating that muscle-specific expression from this element does not involve a direct interaction with these helix-loop-helix proteins. These data demonstrate that the conserved CArG motifs form the core of a family of functionally different DNA regulatory elements that may contribute to the tissue-specific expression properties of their cognate promoters.  相似文献   

3.
Overexpression of the adipocyte differentiation and determination factor-1 (ADD-1) or sterol regulatory element binding protein-1 (SREBP-1) induces the expression of numerous genes involved in lipid metabolism, including lipoprotein lipase (LPL). Therefore, we investigated whether LPL gene expression is controlled by changes in cellular cholesterol concentration and determined the molecular pathways involved. Cholesterol depletion of culture medium resulted in a significant induction of LPL mRNA in the 3T3-L1 preadipocyte cell line, whereas addition of cholesterol reduced LPL mRNA expression to basal levels. Similar to the expression of the endogenous LPL gene, the activity of the human LPL gene promoter was enhanced by cholesterol depletion in transient transfection assays, whereas addition of cholesterol caused a reversal of its induction. The effect of cholesterol depletion upon the human LPL gene promoter was mimicked by cotransfection of expression constructs encoding the nuclear form of SREBP-1a, -1c (also called ADD-1) and SREBP-2. Bioinformatic analysis demonstrated the presence of 3 potential sterol regulatory elements (SRE) and 3 ADD-1 binding sequences (ABS), also known as E-box motifs. Using a combination of in vitro protein-DNA binding assays and transient transfection assays of reporter constructs containing mutations in each individual site, a sequence element, termed LPL-SRE2 (SRE2), was shown to be the principal site conferring sterol responsiveness upon the LPL promoter. These data furthermore underscore the importance of SRE sites relative to E-boxes in the regulation of LPL gene expression by sterols and demonstrate that sterols contribute to the control of triglyceride metabolism via binding of SREBP to the LPL regulatory sequences.  相似文献   

4.
A plasmid carrying a weakly expressed neomycin phosphotransferase (neo) gene from the transposable element Tn5 was found to confer elevated levels of antibiotic resistance on its host cell when it existed in a non-monomeric state. This activation of the neo gene appeared to be a generalized effect which can be exerted on any plasmid-encoded gene, since specific sequences were not required for enhanced neo expression, and the activity of a plasmid-borne chloramphenicol acetyltransferase gene could be similarly induced by oligomerization. The potential role that multiple origins of replication present in such oligomeric plasmids play in these observed increases in gene expression is discussed.  相似文献   

5.
6.
The Tact1 and Tact2 genes, each of which encodes an actin-like protein, are exclusively expressed and translated in haploid germ cells in testis. To characterize the haploid germ cell-specific gene structure, a mouse genomic library was screened with a Tact1 cDNA as a probe, and four independent phage clones containing the Tact1 gene were isolated. Southern hybridization and sequencing analyses revealed that Tact1 and Tact2 were single copy genes contained on a common fragment in a head-to-head orientation, and that the distance between these genes was less than 2 kb. Comparison of the nucleotide sequences of genomic DNA and cDNA demonstrated that Tact1 and Tact2 lack introns, although all known actin or actin-related genes in mammals contain introns. Human Tact orthologues also lack introns and are located within 6.4 kb in a head-to-head orientation. These findings indicate that Tact1 and Tact2 or one of these genes arose by retroposition of a spliced mRNA transcribed from an actin progenitor gene prior to the divergence of rodents and primates. The Tact1 and Tact2 genes are unusual retroposons in that they have retained an open reading frame and are expressed in testicular germ cells, because almost all retroposons become pseudogenes. It was revealed that a 2kb sequence between the two genes bidirectionally controls haploid germ-cell specific expression by analyzing transgenic mice. Comparison of the murine Tact genes with their human orthologues showed a high level of identity between the two species in the 5'-upstream and non-coding sequences as well as in the coding region, indicating that conserved elements in these regions may be involved in the regulation of haploid germ cell-specific expression. The promoter region contains no TATA-, CCAAT- or GC-boxes, although there are potential cAMP response element (CRE)-like motifs in the 5'-upstream region and the 5'-untranslated region in Tact1 and Tact2, respectively. Transient promoter analyses indicate that CREMtau may activate Tact1 and Tact2 expression in germ cells.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The bacterial neomycin phosphotransferase gene driven by the Moloney mouse leukemia virus long terminal repeat (LTR) or SV40 early region promoter was introduced into the human promonocyte-macrophage cell line, U937, and into the pluripotential human embryonic teratocarcinoma cell line, NT2/D1. Clonally derived cell lines capable of growing in 2-4 mg/ml of the aminoglycoside antibiotic, G418 (Geneticin), were established and transfected with pHIVCat, a plasmid expressing the bacterial chloramphenicol acetyl transferase (CAT) activity under the control of the human immunodeficiency virus (HIV-1) LTR. All of the G418 resistant (neo(r)) U937 cell lines and 10 of 14 neo(r) NT2/D1 cell lines exhibited reduced basal levels of CAT expression or impaired responses to activation of the HIV-1 LTR by phorbol 12-myristate 13-acetate (PMA) when compared to the parental lines. Other differences included inhibition of tat activation of the HIV-1 LTR and increased sensitivity of U937 cells to human tumor necrosis factor alpha. The expression of other eukaryotic promoters including the HTLV-1 LTR, SV40 ori sequences, and the human beta-actin gene promoter was similarly affected. However, differentiation of the neo(r) U937 cells into macrophages was neither delayed nor impaired. Because PMA is an activator of protein kinase C (PKC) and a potent inducer of HIV-1 directed gene expression, the amounts, sensitivity to G418, and cytosol to membrane translocation of this enzyme were determined in the wild type and neo(r) U937 cells. G418 at concentrations too low to affect cell growth (12-150 micrograms/ml) inhibited PMA-induced transactivation responses in wild type cells but did not inhibit PKC-dependent protein phosphorylation in vitro. PKC activities in the wild type and neo(r) cells were similar in absolute amounts and in the cytosol-membrane distribution of the enzyme. In contrast with wild type cells, however, all of the cytosolic Ca(2+)-phospholipid-dependent form of PKC disappeared from the neo(r) cells within 30 min after PMA induction. The results suggested that, depending upon the cell type, gene cotransfer using aminoglycoside resistance as a selectable marker may seriously perturb important cellular control mechanisms such as the PKC pathway leading to activation of gene expression.  相似文献   

18.
A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.  相似文献   

19.
20.
The acetamidase-encoding amdS gene of Aspergillus nidulans has been shown to be controlled by multiple regulatory genes. A new gene, amdX , involved in amdS regulation was identified during the characterization of a translocation affecting amdS control. The amdX gene is predicted to encode a 1150-amino-acid polypeptide which contains two Cys-2–His-2 (C2H2) zinc finger DNA-binding motifs. Insertional inactivation of amdX and the phenotypes of transformants containing multiple copies of the amdX gene show that it is an activator of amdS expression. A fusion protein containing the AmdX zinc fingers was found to bind to sequences in the 5' region of amdS which overlap binding sites for the CreA and AmdA regulatory proteins. Evidence is presented for AmdX acting at these sites in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号