共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions. 相似文献
2.
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences. 相似文献
3.
Neocarzinostatin chromophore (NCS-Chrom) induces strong cleavage at a single site (C3) in the single-stranded and 5' (32)P-end-labeled 13-mer GCCAGATTTGAGC in a reaction dependent on a thiol. By contrast, in the duplex form of the same 13-mer, strand cleavage occurs only at the T and A residues, and C3 is not cleaved. To determine the minimal structural requirement(s) for C3 cleavage in the single-stranded oligomer, several deletions and mutations were made in the 13-mer. A 10-mer (GCCAGAGAGC) derived from the 13-mer by deletion of the three T residues was also cleaved exclusively at C3 by NCS-Chrom, generating fragments having 5' phosphate ends. That the cleavage at C3 is initiated by abstraction of its 5' hydrogen is confirmed in experiments using 3' (32)P-end-labeled 10-mer. The competent 13-mer and 10-mer were assigned hairpin structures with a stem loop and a single bulged out A base, placing C3 across from and 3' to the bulge. Removal of the bulged A base from the 13-mer and the 10-mer resulted in complete loss of cutting activity, proving that it is the essential determinant in competent substrates. Studies of thiol post-activated NCS-Chrom binding to the DNA oligomers show that the drug binds to the bulge-containing 13-mer (K(d) = 0.78 microM) and the 10-mer (K(d) = 1.11 microM), much more strongly than to the 12-mer (K(d) = 20 microM) and the 9-mer (K(d) = 41 microM), lacking the single-base bulge. A mutually induced-fit between NCS-Chrom and the oligomer resulting in optimal stabilization of the drug-DNA complex is proposed to account for the site-specific cleavage at C3. These studies establish the usefulness of NCS-Chrom as a probe for single-base bulges in DNA. 相似文献
4.
5.
Mode of reversible binding of neocarzinostatin chromophore to DNA: evidence for binding via the minor groove 总被引:4,自引:0,他引:4
Two general approaches have been taken to understand the mechanism of the reversible binding of the nonprotein chromophore of neocarzinostatin to DNA: (1) measurement of the relative affinity of the chromophore for various DNAs that have one or both grooves blocked by bulky groups and (2) studies on the influence of adenine-thymine residue-specific, minor groove binding agents such as the antibiotics netropsin and distamycin on the chromophore-DNA interaction. Experiments using synthetic DNAs containing halogen group (Br, I) substituents in the major groove or natural DNAs with glucosyl moieties projecting into the major groove show that obstruction of the major groove does not decrease the binding stoichiometry or the binding constant for the DNA-chromophore interaction. Chemical methylation of bases in both grooves of calf thymus DNA, resulting in 13% methylation of N-7 of guanine in the major groove and 7% methylation of N-3 of adenine in the minor groove, decreases the binding affinity and increases the size of the binding site for neocarzinostatin chromophore. Similar results were obtained whether binding parameters were determined directly by spectroscopic measurements or indirectly by measuring the ability of the DNA to protect the chromophore against degradation. On the other hand, netropsin and distamycin compete with neocarzinostatin chromophore for binding to the minor groove of DNA, as shown by their decrease in the ability of poly(dA-dT) to protect the chromophore against degradation and their reduction in chromophore-induced DNA damage as measured by thymine release.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Mode of reversible binding of neocarzinostatin chromophore to DNA: base sequence dependency of binding. 总被引:1,自引:2,他引:1
下载免费PDF全文

The reversible binding of neocarzinostatin chromophore to polynucleotides was studied in order to understand the molecular basis of its base sequence-specificity in DNA damage production. Studies of the spectroscopic and thermodynamic properties of chromophore-polynucleotide interactions reveal that the binding of the chromophore to poly(dA-dT) is qualitatively and quantitatively different from that to poly(dG-dC) (and poly(dI-dC]. From these and other experiments using double-stranded mixtures of homopolynucleotides, it is proposed that the observed A T specific intercalation might result from differential recognition of minor variations in the B-DNA type structure by the chromophore. 相似文献
7.
Sites in the diyne-ene bicyclic core of neocarzinostatin chromophore responsible for hydrogen abstraction from DNA 总被引:4,自引:0,他引:4
The antitumor antibiotic neocarzinostatin exhibits its main drug action by abstracting hydrogen from DNA deoxyribose with consequent strand breakage or related lesions. All biological activities of the drug derive solely from a nonprotein chromophoric substance (NCS-chrom) consisting of a novel epoxy-bicyclo-diyne-ene system. Thiol or sodium borohydride activates NCS-chrom into a labile, reactive species that induces DNA damage but causes inactivation of the drug in the absence of the target DNA. Mass spectrometric studies indicate that the isolated thiol-activated NCS-chrom product in the presence of DNA has the same molecular weight as the thiol-inactivated NCS-chrom product in the absence of DNA. No deuterium is incorporated into the chromophore from the deuterium-labeled sulfhydryl group. Since three deuterium atoms can be incorporated into the drug by treatment with sodium borodeuteride without DNA, adding an unlabeled DNA under parallel conditions permitted the ready identification of the activated NCS-chrom product that abstracted hydrogen from the DNA. Not only does the activated NCS-chrom product have the same structure as the inactivated drug without DNA, but two of the incorporated deuterium atoms have been substituted by hydrogen. With the aid of NMR spectrometry, the two replaced hydrogen atoms are found to be incorporated into the C-2 and C-6 positions of the bicyclo-diyne-ene ring of NCS-chrom and are derived neither from borodeuteride nor from the hydroxyl functions of the solvents. In accord with current proposals, the two hydrogens incorporated into the drug may come from closely opposed sites on the complementary strands of the DNA at which the drug is bound.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Our previous structure elucidation of the complexes of DNA and postactivated neocarzinostatin chromophore (NCS-chrom) compounds revealed two distinctly different binding modes of this antitumor molecule. A thorough understanding of these results will provide the molecular basis for the binding and DNA chain cleavage properties of NCS-chrom. NCSi-gb is one of the postactivated mimics of NCS-chrom which is formed under thiol-free conditions and is able to bind to DNA. This report describes the structure refinement of the NCSi-gb-bulge-DNA complex [Stassinopoulos, A., Jie, J., Gao, X., and Goldberg, I. H. (1996) Science 272, 1943-1946] and the NMR characterization of the free bulge-DNA and free NCSi-gb. These results reveal that the formation of the complex involves conformational changes in both the DNA and the ligand molecule. Of mechanistic importance for the NCS-chrom-DNA interaction, the two ring systems of the drug are brought closer to each other in the complex. This conformation correlates well with the previously observed marked enhancement of the formation of a DNA bulge cleaving species in the presence of bulge-DNA sequences, due to the promotion of the intramolecular radical quenching of the activated NCS-chrom. Interestingly, the binding of NCSi-gb promotes the formation of a bulge binding pocket; this was not found in the unbound DNA. NCS-chrom is unique among the enediyne antibiotics in its ability to undergo two different mechanisms of activation to form two different DNA binding and cleaving species. The two corresponding DNA complexes are compared. One, the bulge-DNA binder NCSi-gb, involves the major groove, and the second, the duplex binder NCSi-glu which is generated by glutathione-induced activation, involves the minor groove. Since the two NCS-chrom-related ligand molecules contain some common chemical structural elements, such as the carbohydrate ring, the striking differences in their DNA recognition and chain cleavage specificity provide insights into the fundamental principles of DNA recognition and ligand design. 相似文献
9.
The methanol-extracted, nonprotein chromophore of neocarzinostatin (NCS), which has DNA-degrading activity comparable to that of the native antibiotic, was found to have a strong affinity for DNA. Binding of chromophore was shown by (1) quenching by DNA of the 440-nm fluorescence and shifting of the emission peak to 420 nm, (2) protection by DNA against spontaneous loss of activity in aqueous solution, and (3) inhibition by DNA of the spontaneous generation of 490-nm fluorescence. Good quantitative correlation was found between these three methods in measuring chromophore binding. There was nearly a 1:1 correspondence between loss of chromophore activity and generation of 490-nm fluorescence, suggesting spontaneous degradation of active chromophore to a highly fluorescent product. Chromophore showed a preference for DNA high in adenine + thymine content in both fluorescence quenching and protection studies. NCS apoprotein, which is known to bind and protect active chromophore, quenched the 440-nm fluorescence, shifted the emission peak to 420 nm, and inhibited the generation of 490-nm fluorescence. Chromophore had a higher affinity for apoprotein than for DNA. Pretreatment of chromophore with 2-mercaptoethanol increased the 440-nm fluorescence seven-fold and eliminated the tendency to generate 490-nm fluorescence. The 440-nm fluorescence of this inactive material was also quenched by DNA and shifted to 420 nm, indicating an affinity for DNA comparable to that of untreated chromophore. However, its affinity for apoprotein was much lower than that of untreated chromophore. Both 2-mercapto-ethanol-treated and untreated chromophore unwound supercoiled pMB9 DNA, suggesting intercalation by both molecules. Since no physical evidence for interaction of native neocarzinostatin with DNA has been found, it is likely that dissociation of the chromophore from the protein and association with DNA are important steps in degradation of DNA by neocarzinostatin. 相似文献
10.
Activation of neocarzinostatin chromophore and formation of nascent DNA damage do not require molecular oxygen. 总被引:4,自引:5,他引:4
下载免费PDF全文

Thiol-activated neocarzinostatin chromophore abstracts tritium from the 5', but not from the 1' or 2' positions of deoxyribose in DNA and incorporates it into a stable, non-exchangeable form. The abstracted tritium remains covalently associated with the chromophore or its degradation product after treatment with acid or alkali, respectively. Drug activation and the consequent hydrogen abstraction reaction, presumably generating a carbon-centered radical at C-5', do not require molecular oxygen but have a dose-dependent relation with thiol. Under aerobic conditions, where base release and DNA strand breaks with nucleoside 5'-aldehyde at the 5'-ends are produced, hydrogen abstraction from C-5' parallels these parameters of DNA damage. It is possible to formulate a reaction scheme in which the carbon- centered radical at C-5' is an intermediate in the formation of the various DNA damage products found under both aerobic and anaerobic conditions. 相似文献
11.
Stoichiometric uptake of molecular oxygen and consumption of sulfhydryl groups by neocarzinostatin chromophore bound to DNA 总被引:3,自引:0,他引:3
In the presence of DNA, and under conditions which resulted in efficient DNA degradation, the reaction of the neocarzinostatin chromophore with sulfhydryl groups was accompanied by a rapid drop in the oxygen tension of the solution. The total extent of oxygen uptake indicated that, consistently, 1 mol of O2 was consumed/mol of chromophore. The rate of oxygen uptake, however, was strongly dependent on the sulfhydryl concentration, and uptake occurred within a few seconds of the sulfhydryl-induced increase in 420-nm fluorescence of the chromophore. Parallel experiments, in which the sulfhydryl concentration of the solution was monitored, showed that approximately 2 mol of sulfhydryl groups were consumed/mol of chromophore, with kinetics similar to those of O2 uptake. Under anaerobic conditions, only 1 mol of sulfhydryl was consumed, but the sulfhydryl-induced fluorescence increase was not inhibited. These results suggest that (i) a reaction with a single sulfhydryl group converts the chromophore to an activated form, (ii) in the presence of DNA this activated chromophore participates in a subsequent reaction which consumes 1 mol of O2 followed by an additional mole of sulfhydryl, and (iii) each chromophore molecule undergoes only one such reaction cycle. In the absence of sulfhydryl groups, the chromophore slowly degraded, giving a product with intense 490-nm fluorescence. This spontaneous degradation reaction, which does not result in DNA damage, was also accompanied by uptake of nearly 1 mol of O2/mol of chromophore. 相似文献
12.
Chromatin is the in vivo target site for neocarzinostatin, a DNA strand scission antitumor drug. The effect of neocarzinostatin and its active chromophore component on HeLa cell chromatin is described here. Chromatin consisting of a mixture of mono-, di-, tri- and larger nucleosome fragments is prepared by micrococcal nuclease digestion of HeLa cell nuclei. Drug-induced conversion of chromatin to smaller sized fragments is measured by electrophoresis of the DNA on non-denaturing 4% polyacrylamide gels. Chromatin breakdown measured under these conditions is double-stranded in nature. In the presence of 2 mM dithiothreitol, neocarzinostatin causes degradation of large chromatin fragments and a loss of distinct nucleosome peaks. Detection of chromatin breakdown by neocarzinostatin is dependent upon the concentration of chromatin in the assay. When chromatin is increased from 14 to 70 micrograms/ml, changes in the larger fragments caused by 100 micrograms/ml neocarzinostatin become less obvious are are almost undetectable at 140 micrograms/ml chromatin. No change is observed when chromatin is treated with either neocarzinostatin or its chromophore in the absence of dithiothreitol. For detectable levels of chromatin degradation, 10 micrograms/ml neocarzinostatin is required compared to only 2.5 microgram/ml chromosome (expressed in microgram equivalent neocarzinostatin). Such degradation also occurs more rapidly with chromophore than with neocarzinostatin. Digestion of chromatin with neocarzinostatin continues for at least 30 min at 37 degrees C, while similar degradation caused by chromophore is complete in 1 min. Neocarzinostatin levels which actively degrade isolated chromatin can also effect release of soluble chromatin from intact nuclei. The released chromatin can serve as a substrate for micrococcal nuclease digestion. Such chromatin studies should prove useful in characterizing the mechanism of action of DNA reactive drugs such as neocarzinostatin. 相似文献
13.
C-1027 belongs to the family of chromoprotein antitumor antibiotics, which contain a carrier apoprotein and a highly unstable enediyne chromophore. The enediyne spontaneously aromatizes to generate p-benzyne biradical, and subsequently abstracts hydrogens from the DNA sugar backbone, resulting in cleavage of the double strand. Using spin-trapping methods, we obtained direct proof of radical intermediates during an DNA cleavage, and found intriguing difference in behavior between the trapping agents 2-methyl-2-nitrosopropane (MNP) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO): MNP added to the sugar radicals of the DNA, whereas DMPO directly trapped a phenyl radical or p-benzyne biradical derived from the C-1027 chromophore. 相似文献
14.
Takashima H Yoshida T Ishino T Hasuda K Ohkubo T Kobayashi Y 《The Journal of biological chemistry》2005,280(12):11340-11346
Holo-neocarzinostatin (holo-NCS) is a complex protein carrying the anti-tumor active enediyne ring chromophore by a scaffold consisting of an immunoglobulin-like seven-stranded anti-parallel beta-barrel. Because of the labile chromophore reflecting its extremely strong DNA cleavage activity and complete stabilization in the complex, holo-NCS has attracted much attention in clinical use as well as for drug delivery systems. Despite many structural analyses for holo-NCS, the chromophore-releasing mechanism to trigger prompt attacks on the target DNA is still unclear. We determined the three-dimensional structure of the protein and the internal motion by multinuclear NMR to investigate the releasing mechanism. The internal motion studied by 13C NMR methine relaxation experiments showed that the complex has a rigid structure for its loops as well as the beta-barrel in aqueous solution. This agrees with the refined NMR solution structure, which has good convergence in the loop regions. We also showed that the chromophore displayed a similar internal motion as the protein moiety. The structural comparison between the refined solution structure and x-ray crystal structure indicated characteristic differences. Based on the findings, we proposed the chromophore-releasing mechanism by a three-state equilibrium, which sufficiently describes both the strong binding and the prompt releasing of the chromophore. We demonstrated that we could bridge the dynamic properties and the static structure features with simple kinetic assumptions to solve the biochemical function. 相似文献
15.
We have studied a series of three-way DNA junctions containing unpaired bases on one strand at the branch-point of the junctions. The global conformation of the arms of the junctions has been analysed by means of polyacrylamide gel electrophoresis, as a function of conditions. We find that in the absence of added metal ions, all the results for all the junctions can be accounted for by extended structures, with the largest angle being that between the arms defined by the strand containing the extra bases. Upon addition of magnesium (II) or hexamine cobalt (III) ions, the electrophoretic patterns change markedly, indicative of ion-dependent folding transitions for some of the junctions. For the junction lacking the unpaired bases, the three inter-arm angles appear to be quite similar, suggesting an extended structure. However, the addition of unpaired bases permits the three-way junction to adopt a significantly different structure, in which one angle becomes smaller than the other two. These species also exhibit marked protection against osmium addition to thymine bases at the point of strand exchange. These results are consistent with a model in which two of the helical arms undergo coaxial stacking in the presence of magnesium ions, with the third arm defining an angle that depends upon the number of unpaired bases. 相似文献
16.
Sequence-specific, strand-selective, and directional binding of neocarzinostatin chromophore to oligodeoxyribonucleotides 总被引:2,自引:0,他引:2
The sequence-specific interaction of neocarzinostatin chromophore (NCS-C) has been evaluated with a series of synthetic oligodeoxyribonucleotides of defined sequences containing the most preferred nucleotide cleavage site, T or A, or both. NCS-C preferentially cleaves T or A residues in the sequence GN1N2, where N2 is T or A. Greater cleavage occurs on the strand enriched with G residues, provided that they are adjacent to other G residues, but not at N1. These results are compatible with a model for drug binding in which the naphthoate moiety of NCS-C preferentially intercalates at GN1. This is accompanied by electrostatic binding interaction provided by the positively charged amino sugar moiety so as to place the reactive bicyclo[7.3.0]dodecadienediyne epoxide moiety in an appropriate orientation in the minor groove enabling, upon thiol activation, attack at C-5' of T or A. At certain sequences, such as GCT.AGC, a similar binding mode is also able to generate a basic lesions at the C residue on the opposite strand, forming a bistranded lesion. Although the reactions with glutathione generally show the same strand selectivity and sequence specificity as those with dithiothreitol, the former is usually more efficient than the latter. 相似文献
17.
The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe2+ and O2), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [32P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed. 相似文献
18.
Mechanistic studies on the DNA linking activity of Epstein-Barr nuclear antigen 1. 总被引:3,自引:0,他引:3
下载免费PDF全文

The DNA replication, plasmid segregation and transactivation functions of Epstein-Barr nuclear antigen 1 (EBNA1) require the binding of EBNA1 to specific DNA recognition sites in the two non-contiguous functional elements of the Epstein-Barr virus latent origin of replication, oriP . EBNA1 molecules bound to these elements interact with each other resulting in the formation of looped individual DNA molecules and multiply linked DNA molecules. We have developed a glycerol gradient sedimentation assay suitable for quantitative analysis of the DNA linking activity of EBNA1 and used it to investigate the contribution of EBNA1 residues to the linking interaction and the mechanism of the interaction. Using overlapping internal deletion mutants, we found that two regions of EBNA1 can cause DNA linking, amino acids 40-100 and 327-377, but that the stabilities of the linked complexes formed by the two regions differ dramatically; only complexes formed through the latter region are stable to glycerol gradient sedimentation analysis. Mechanistic studies using EBNA1 in combination with GAL4-EBNA1 fusion proteins showed that linking interactions mediated by residues 327-377 are homotypic. Our results also suggest that only the DNA-bound form of EBNA1 participates in the protein-protein interactions seen in DNA linking. 相似文献
19.
Treatment of poly(dA-dT) X poly(dA-dT) with the nonprotein chromophore of neocarzinostatin in the presence of sulfhydryls resulted in both direct and alkali-dependent base release, indicative of DNA sugar oxidation. Covalent chromophore-DNA adducts were also formed. Under anaerobic conditions, base release was strongly inhibited; however, adduct formation was not inhibited and in some cases was markedly enhanced. In the presence of dithiothreitol, anoxia increased adduct formation by a factor of 2, and a particularly stable adduct species was formed, which was recovered from nuclease digests of the treated DNA as a highly fluorescent compound with structure chromophore-d(TpApT). Acid hydrolysis of chromophore-d(TpApT) released free adenine base and both 3'dTMP and 5'dTMP, leaving a compound that contained only chromophore and the deoxyadenosine sugar. These results conclusively confirm that the chromophore forms a covalent adduct with deoxyribose in DNA. Thus, even in the absence of oxygen, activation of the chromophore by sulfhydryls results in the formation of a species capable of reacting with deoxyribose. Several other adduct species were also formed, some of which were nonfluorescent and relatively hydrophilic, but all of which were produced in increased amounts under anoxia. This inverse relation between sugar oxidation and adduct formation suggests that the two lesions share a common precursor. In the presence of other thiols, the effects of anoxia were somewhat different. With glutathione, anoxia markedly enhanced adduct formation, but the total adduct formed was considerably less than with dithiothreitol. With 2-mercaptoethanol, anoxia had no effect on total adduct formation, but the distribution of adduct species was altered.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
A tentative model of the intercalative binding of the neocarzinostatin chromophore to double-stranded tetranucleotides.
下载免费PDF全文

Theoretical computations are performed of the intercalative binding of the neocarzinostatin chromophore (NCS) with the double-stranded oligonucleotides d(CGCG)2, d(GCGC)2, d(TATA)2 and d(ATAT)2. Minor groove binding is preferred over major groove binding. It is found that the long axis of the stacked naphtoate ring lies approximately parallel to the long axis of the base pairs of the intercalation site. The galactosamine ammonium group interacts with specific sites of the groove (O2/N3 of bases 2 and O1' of sugar S3), whereas the dodecadyine ring system wraps around the groove towards the backbone. An overall AT versus GC preference is derived. Intercalation in a central purine-(3', 5')-pyrimidine sequence appears to be preferred over that in a central pyrimidine-(3', 5')-purine sequence. 相似文献