首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary The allelopathic effects of interrupted fern frond leachates on ectomycorrhizal (inoculated) and nonmycorrhizal (noninoculated) northern red oak (Quercus rubra L.) seedlings were investigated. Container-grown northern red oak was inoculated with vegetative mycelium ofSuillus luteus L. Fr. following acorn germination. Noninoculated control seedlings were also maintained. Seedlings were grown in a glasshouse under full sunlight or shaded (25% of full sunlight) conditions. Leachate or deionized water solutions were applied to seedlings eleven times over a 91-day period to simulate a rainfall induced transfer of allelopathic chemicals from fern fronds to the soil. Fern frond leachates significantly reduced seedling survival, however, inoculated seedlings showed less mortality. Chromium concentrations of pooled lateral root or leaf tissue were comparatively higher in tissues exhibiting greater mortality. Root biomass was reduced by fern fern frond leachate applications. Seedling biomass was not significantly affected by fungal inoculation. Our results confirm previous documentation of the allelopathic potential of ferns, and suggest that ectomycorrhizal fungi may ameliorate allelopathic effects of ferns on northern red oak seedling survival and growth.  相似文献   

2.
Bare-root seedlings of pedunculate oak (Quercus robur L.) and northern red oak (Quercus rubra L.) were lifted in January and stored at 1.8°C, at 82% relative humidity, until their fresh weight declined by 33%. Root growth potential (RGP), fine root electrolyte leakage (REL), fine root water content (RWC), shoot tip water content (SWC), starch and metabolic solute contents in root and shoot, were measured just after lifting and after treatment. Survival of treated seedlings was also assessed in a field trial. RWC, SWC, REL, RGP were dramatically affected by desiccation during cold storage. In both species, root soluble carbohydrate level, inositol level and isocitrate level increased, whereas root starch level and shoot soluble carbohydrate level decreased. In northern red oak, treated seedlings had higher root contents of soluble carbohydrates, inositol and proline than in pedunculate oak. Moreover, treatment induced proline accumulation only in northern red oak roots. These differences could explain why field survival of treated seedlings was significantly better in northern red oak than in pedunculate oak.  相似文献   

3.
I investigated competition for light between canopy plants and juvenile valley oaks (Quercus lobata Nee) in a mixed-broadleaf woodland of California's northern Coast Ranges. Canopy effects on understory light supply were separated among the overlying adult valley oak, the adult's woody understory, and neighboring trees and shrubs through a series of light sampling surveys and measurements of the number, size, and spatial distribution of neighboring plants. Light supply in the understory was primarily influenced by neighboring plants, with no detectable effect of the overlying adult valley oak. Light supply in the understory averaged 25% full sun due to a high frequency of canopy gaps and a typically open understory. Seedling response to understory light supply was investigated in an experimental sunfleck gradient (10%, 19%, and 100% full sun). Between 10% and 100% full sun, seedling growth increased by 90% and the shoot:∗∗∗root ratio changed from 1.561 to 0.607. Shade seedlings were also taller and produced fewer, larger, and thinner leaves than seedlings grown in full sun. A field survey of the spatial distribution and crown morphology of saplings and young adults found 1) the distance between young valley oaks and neighboring overstory trees to increase with neighbor size, and 2) crowns of the young oaks to be skewed away from neighbors. Although shading by the canopy was only moderate, canopy effects on understory light supply may restrict juvenile recruitment of valley oak in this woodland.  相似文献   

4.
Weed control and overstory reduction are important silvicultural treatments for improving survival and growth of under‐planted oak and hickory seedlings. Mast‐producing trees in the bottomland forests of the blackland prairie and Post Oak Savannah ecoregions of Texas have declined in abundance. Oaks and hickories have been replaced by more shade‐tolerant species, including green ash (Fraxinus pennsylvanica Marshall) and sugarberry (Celtis laevigata Willd.), which do not produce significant hard mast for priority wildlife species. A split‐plot experiment design was installed on three sites at Richland Creek Wildlife Management Area in Freestone County, Texas, studying the effects of canopy coverage and competition control on survival and growth of bur oak (Quercus macrocarpa Michx.), Shumard oak (Quercus shumardii Buckl.), and pecan (Carya illinoinensis (Wagenh.) K. Koch) seedlings. Uprooting by hogs shortly after planting resulted in greater than 90% mortality of pecan on the two lower elevation sites. Year one survival of Shumard oak was significantly higher than bur oak. However, bur oak was more preferred by hogs than Shumard oak. Year one growth of bur oak was significantly greater than Shumard oak. Severe flooding during the second growing season caused complete mortality on the lower two sites. None of the species were well suited to such prolonged (3–4 months) inundation as seedlings. On the remaining site, density reduction and weed‐barrier mats improved growth and survival while herbaceous weed control with herbicides actually reduced both growth and survival.  相似文献   

5.
We experimentally examined the effects of canopy, vegetation, and leaf litter cover on the demography of Wild lupines (Lupinus perennis) in a central North American oak savanna spanning 9 years. We also compared the distribution of Wild lupine across the landscape to results predicted by the demographic experiments. With less canopy cover, soil temperatures were warmer and seedlings emerged earlier. Seedling survival increased 14% with each additional leaf grown. Seedling survival was four times greater in openings and partial shade than in dense shade. Seedling survival was also influenced by interactions between canopy cover and vegetation cover, between canopy cover and leaf litter, and among canopy cover, vegetation cover, and litter cover. In openings, seedlings had higher survival when vegetative cover was present, suggesting a positive shading effect on survival, but with greater canopy cover vegetative cover reduced survival. Seedling survival was greater for plants that experienced herbivory, a result that was probably related to plant size and quality rather than having been eaten. Survival of lupines to 9 years after seed planting was greatest in the partial shade, moderate in openings, and least in dense shade. Wild lupine cover across the landscape was greatest when litter cover was low and canopy cover and ground layer cover were moderate. Reduction of canopy cover by burning or cutting, and reduction of leaf litter by prescribed burning will benefit the reintroduction of Wild lupine by increasing light, reducing litter cover, and creating disturbances; however, the reduction of vegetation cover in openings may hinder lupine reintroduction.  相似文献   

6.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

7.
Bottomland hardwood forests of the southeastern United States have declined in extent since European settlement. Forest restoration activities over the past decade, however, have driven recent changes in land use through an intensified afforestation effort on former agricultural land. This intense afforestation effort, particularly in the Lower Mississippi Alluvial Valley, has generated a demand for alternative afforestation systems that accommodate various landowner objectives through restoration of sustainable forests. We are currently studying an afforestation system that involves initial establishment of the rapidly growing native species eastern cottonwood (Populus deltoides Bartr. ex Marsh.), followed by enrichment of the plantation understory with Nuttall oak (Quercus nuttallii Palm.). In this article, we examine the growth and biomass accumulation by Nuttall oak seedlings to determine whether this species can be established and whether it will develop beneath the cottonwood overstory. After 3 years of growth beneath cottonwood canopies, Nuttall oak seedlings were similar in height (126 cm), but were 20% smaller in root‐collar diameter than seedlings established in open fields. Seedlings established in the open accumulated more than twice the biomass of seedlings growing beneath a cottonwood canopy. However, the relative distribution of accumulated biomass in seedlings did not differ in the two environments. Ten percent of total seedling biomass was maintained in leaf tissue, 42% was maintained in stem tissue, and 48% was maintained in root tissue on open‐grown seedlings and seedlings established in the understory of cottonwood plantations. Though establishment in the more shaded understory environment reduced Nuttall oak growth, seedling function was not limited enough to induce changes in plant morphology. Our results suggest that an afforestation system involving rapid establishment of forest cover with a quick‐growing plantation species, followed by understory enrichment with species of later succession, may provide an alternative method of forest restoration on bottomland hardwood sites and perhaps other sites degraded by agriculture throughout temperate regions.  相似文献   

8.
S. Catovsky  F. A. Bazzaz 《Oikos》2002,98(3):403-420
To address the role of canopy‐seedling feedbacks in the structure and dynamics of mixed conifer broad‐leaved forests in the eastern US, we monitored seedling regeneration patterns and environmental conditions in the understorey of stands dominated by either hemlock (Tsuga canadensis) or red oak (Quercus rubra) for three years. Hemlock seedlings were favoured over other species’ seedlings in hemlock stands (a true positive feedback), due to a combination of high seed inputs, high seedling emergence and relatively high seedling survival during the growing season, which allowed hemlock to remain dominant under its own canopy. Red oak stands favoured a suite of mid‐successional broad‐leaved species over hemlock. A more even age structure of broad‐leaved species in red oak stands revealed that high seedling survival in such stands were driving this feedback. Canopy‐mediated variations in both understorey light availability (1.5% for hemlock vs 3.5% for red oak) and soil pH (3.9 for hemlock vs 4.4 for red oak) were found to be the primary correlates of stand‐level differences in seedling regeneration dynamics. In mixed temperate forests in the eastern US, canopy‐seedling feedbacks could act to slow successional trajectories and contribute to the maintenance of a stable landscape structure over many generations.  相似文献   

9.
A two-component model of growth and maintenance respiration is used to study the response of northern red oak (Quercus rubra L.) seedlings and 32-year-old trees to sub-ambient (10 μmol h; cumulative dose based on 7 h daily mean), ambient (43 μmol h), and twice-ambient (85 μmolh) ozone. The relative growth rates (RGR) of leaves sampled from seedlings and trees were similar across treatments, as were specific leaf respiration rates (SRR). Growth coefficients estimated from the SRR versus RGR relationship averaged 25-3 mol CO2 kg?1 leaf dry mass produced for seedlings and 21-5 mol kg?1 for trees. Maintenance coefficients ranged from 0-89 to 1-07 mol CO2 kg?1 leaf dry mass d?1 for seedlings and from 0-64 to 0-84 mol kg-1 d?1 for trees. Neither coefficient was affected by ozone. Leaves sampled throughout the growing season also showed little response of respiration to ozone. This occurred despite a 30% reduction in net photosynthesis for trees grown at twice-ambient ozone. These results suggest that growth and maintenance respiration in young northern red oak leaves are not affected by ozone and that in older leaves injury can occur without a parallel increase in so-called ‘maintenance’ respiration.  相似文献   

10.
Abstract. Question: Does the influence of plant canopy on seedling establishment interact with climate conditions, and particularly, do intensified drought conditions, enhance a positive effect of the vegetation canopy on seedlings in Mediterranean‐type ecosystems. Location: Mediterranean shrubland near Barcelona, Spain at 210 m a.s.l. Methods: Over the course of four years we recorded seedling emergence and survival in open areas and below vegetation under control, drier and warmer experimental climatic conditions. Results: Seedling emergence is more sensitive to climate conditions than later stages of growth. When considering the whole set of species, the total number of established seedlings at the end of the experiment was lower in the drought and warming stands than in control ones, and vegetation canopy increased the number of these seedlings in the drought stands. Drought reduced seedling emergence but not warming, while the interaction between climate treatments and vegetation canopy was not significant. Seedling survival was lower in the warming treatment than in the control. Under drought conditions, vegetation canopy increased seedling emergence of the dominant Globularia alypum. In control stands, vegetation canopy reduced their survival. Vegetation canopy increased the survival of the dominant Erica multiflora in warming stands, and it reduced the survival of G alypum in drought stands. No significant effects of drought and warming were observed in the seed rain of these two species. Conclusions: The balance of the facilitation‐competition interactions between vegetation canopy and seedling establishment in Mediterranean‐type ecosystems determined by water availability, and drought conditions enhance the positive effect of vegetation canopy. This interaction is species‐specific and shows important between‐year variability.  相似文献   

11.
To elucidate how enriched CO2 atmospheres, soil fertility, and light availability interact to influence the long-term growth of tree seedlings, six co-occurring members of temperate forest communities including ash (Fraxinus americana L.), gray birch (Betula populifolia), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), striped maple (Acer pensylvanicum), and red oak (Quercus rubra L.) were raised in a glasshouse for three years in a complete factorial design. After three years of growth, plants growing in elevated CO2 atmospheres were generally larger than those in ambient CO2 atmospheres, however, magnitudes of CO2-induced growth enhancements were contingent on the availability of nitrogen and light, as well as species identity. For all species, magnitudes of CO2-induced growth enhancements after one year of growth were greater than after three years of growth, though species' growth enhancements over the three years declined at different rates. These results suggest that CO2-induced enhancements in forest productivity may not be sustained for long periods of time. Additionally, species' differential growth responses to elevated CO2 may indirectly influence forest productivity via long-term species compositional changes in forests.  相似文献   

12.
Field observations of seedlings and saplings of Avicennia marina showed patterns that correlated with salinity, light and sediment. Models that account for these observations were subsequently tested in a series of field experiments. Establishment varied within an estuary under controlled conditions but was not related to salinity or sediment type. Seedling survival was uniform over 3 years regardless of position in estuary and sediment type. Seedling densities and survival under canopies or in canopy gaps were not significantly different. However, seedling growth and density of saplings were greater in canopy gaps. Experiments involving manipulations of canopies showed no differences in seedling survival under canopies or in light gaps, but addition of slow-release fertilizer enhanced growth and survival in canopy gaps and under canopies. Long-term comparison of areas denuded of a canopy and with sediment disturbance showed enhanced establishment and survival when compared with areas with canopy gaps but with undisturbed sediments. Overall there appears to be no restriction to establishment of propagules within mangrove stands other than the supply of propagules and tidal or wave action. In contrast, recruitment to the sapling stage appears to be restricted by light and sediment resources. We suggest that propagules need to establish in a regeneration niche for seedling recruitment to the sapling stage. This differs from the view that seedlings in the under-storey are analogous to a seed pool in the soil.  相似文献   

13.
We monitored the recruitment, survival, and growth of tree saplings on invasive (Larix kaempferi) versus native species (Betula and Populus) using 16 20 m × 20 m plots established along elevation gradient on the volcano Mount Koma, Japan, for 7 years because the sapling behaviors should determine forest structures. The crowding of overstory consists mostly of Larix decreased with increasing elevation. Larix recruits were conspicuous, particularly at middle elevation where overstory crowding was intermediate, while Betula recruits were least. Larix overstory crowding inhibited the recruitment of all the taxa, although intermediate crowding promoted the recruitment of Larix. The restriction of sapling emergence was conspicuous at lower elevation where the overstory crowding was highest, probably because of shading, and/or competition with overstory trees. Sapling recruitment for all taxa was restricted at higher elevation, due to high stresses derived from direct solar radiation and strong wind without overstory. The survival of saplings was 96% for Larix and Betula, while it was ca. 50% for Populus. Larix overstory decreased the survival and growth of all the taxa, except Larix survival and Betula growth. The results implied that Larix could establish by high survival once the recruits succeeded everywhere and native sapling regeneration was restricted by Larix overstory. Strong recruitment, survival, and growth of Larix, together with resistance to overstory crowding, enables it to dominate and persist in such disturbed areas regardless of the canopy closure.  相似文献   

14.
Outplanting container-grown oak seedlings with undesirable shoot and root characteristics result in poor establishment and reduced field growth. The objective of this study was to determine the influence of container type on both above-and below-ground nursery growth and field performance of one-year old tap-rooted seedlings Quercus ilex L. and Quercus coccifera L. The experiment was conducted in an open-air nursery and the seedlings were grown in three container types. At the end of the nursery, growth period seedlings’ shoot height, diameter (5 mm above root collar), shoot and root biomass, root surface area, root volume and total root length were assessed. Then the seedlings were planted in the field and their survival and growth were recorded for two growing seasons after outplanting. The results showed a difference between the Quercus species in the effect of container type. Q. ilex seedlings raised in paper-pot had significantly greater height, diameter, shoot and root biomass and root volume than those raised in the other two container types. Similarly, Q. coccifera seedlings raised in paper-pot, had significantly greater above-and below-ground growth than those raised in the other two container types. Both oak species showed relatively low survival in the field; the mortality was mainly observed the first year after outplanting, especially after the summer dry period. However, 2 years after outplanting, the paper-pot seedlings of the two oak species showed better field performance.  相似文献   

15.
M. C. Rossiter 《Oecologia》1991,87(2):288-294
Summary The nutritional environment of the parental generation of the polyphagous gypsy moth, Lymantria dispar, can significantly influence the growth and reproductive potential of the next generation through environmentally-based maternal effects. In the first experiment, members of the parental generation were reared on red oak trees (Quercus rubra L.) with known defoliation and phenolic levels. Diet in the offspring generation was homogeneous (synthetic diet). With genetic effects accounted for 1) offspring attained greater pupal weights when their mothers fed on trees with higher leaf damage levels, 2) daughters had a shorter prefeeding stage, a trait associated with dispersal tendency, when their mothers experienced higher condensed tannin levels, and 3) sons had lower pupal weights when their mothers experienced greater condensed tannin levels. In the second experiment, members of the parental generation were reared on either red or black oak (Q. velutina) trees. Offspring of each mother were divided among four diets: red oak, chestnut oak (Q. prinus L.), a standard synthetic diet, and a low-protein synthetic diet. The parental host species accounted for 24% of the variation in daughters' development time; offspring diet accounted for 52%. When mothers were reared on black oak rather than red oak, their offspring developed significantly faster when the F1 diet was chestnut oak. Environmentally-based maternal effects can significantly influence the expression of offspring dispersal potential, growth rate, and offspring fecundity. These traits contribute to natality and survival in natural populations and, hence, to population growth potential. Theoretical models of insect population dynamics demonstrate that the presence of a time delay in a density dependent response can induce destabilization. Maternal effects act on a time delay and may participate in the destabilization characteristic of outbreak species.  相似文献   

16.
The effects of growing seedlings of red oak (Quercus rubra) and red ash (Fraxinus pennsylvanica) with Hoagland solutions containing five N-regimes, differing in the N-forms (NH4, NO3) and concentrations (High and Low), in relation to light intensity were investigated by the utilization of enzymatic markers of the N assimilation pathway, nitrate reductase (NR) and glutamine synthetase (GS). Red oak and red ash showed different patterns of N-assimilation. Red oak seedlings assimilated NO3 in low amounts in their roots and leaves, whereas red ash seedlings assimilated high amounts of NO3, mostly in the leaves. A significant amount of constitutive NR activity was found in red oak seedlings supplied with NH4 N-regime. This could be characteristic of a species adapted to soils that are poor in nitrogen. Root GS activity was lower in red oak seedlings than in red ash seedlings, indicating that the rate of NH4 assimilation differed in these two hardwood species. Low irradiance reduced growth of both hardwood species, but greatly affected the specific leaf area of red ash and reduced NO3 assimilation (when data are expressed per leaf area). Both species reacted similarly to N-regimes in terms of relative growth rate.  相似文献   

17.
Interest in regenerating oaks (Quercus spp.) has promoted use of partial harvesting techniques that create an open forest structure. From 2007 to 2009, we studied songbirds in mixed-oak forests in southeastern Ohio, comparing shelterwoods recently harvested to 50% stocking and closed-canopy mature second-growth. We surveyed birds using distance-based methods (56 line transects in 18 stands at 4 forests). We intensively investigated suitability of shelterwoods for canopy-nesting species by examining habitat preferences, as measured by settlement patterns, age distributions, and site fidelity; we also examined nesting success. Several midstory and ground-nesting species were 26–73% less abundant in shelterwood than unharvested stands, whereas shrub-nesting species increased >100% several years post-harvesting. Canopy-nesting species were 31–98% more abundant in shelterwoods, but cerulean warbler (Setophaga cerulea) responses varied by forest. Patterns of settlement and site fidelity were generally similar among stands. Proportions of young males were actually greater for several species in shelterwood than unharvested stands, which may have been a consequence of young birds colonizing newly created (or improved) habitat. Even in our predominantly forested study system, nesting success (>700 nests) was low, ranging from 15% to 19% for yellow-throated vireos (Vireo flavifrons) and cerulean warblers, to 27–36% for scarlet tanagers, blue-gray gnatcatchers (Polioptila caerulea) and eastern wood-pewees (Contopus virens). However, nest survival did not differ between shelterwood and unharvested stands, possibly because numbers of avian predators did not change with harvesting. Despite increased numbers of brown-headed cowbirds (Molothrus ater) in shelterwoods, only 2% of canopy nests in which young could be identified were parasitized. Although these results suggest shelterwood harvests containing abundant overstory trees can provide short-term breeding habitat for canopy songbirds, long-term responses of birds to partial harvesting may differ from those documented here depending on different management options employed. Management for oak regeneration will typically remove all overstory trees later in the cutting cycle, initially resulting in loss of nesting substrates and hence breeding habitat for canopy songbirds. © 2011 The Wildlife Society.  相似文献   

18.
Red mangrove (Rhizhophora mangle L.) is the dominant tree species in the intertidal zone of ecosystems on the Atlantic shores of the Caribbean and tropical western Atlantic. The propagules of this species are initially buoyant, becoming negatively buoyant before rooting in a variety of substrates. After establishment, these seedlings form aerial roots, leading to communities of plants with complex networks of stems and aerial roots. While established mangrove communities assist in stabilizing coastlines, seedlings are susceptible to wave, current and wind energy and this limits the habitats that they can successfully colonize. In this experiment, the mechanical resistance of seedlings growing at five locations with different substrate and canopy conditions was tested. The 78 seedlings tested ranged in height from 27 to 47 cm, had between one and ten pairs of leaves but had not yet formed aerial roots. Seedlings were pulled horizontally. The reaction force at 20° deflection in four cardinal directions and then force to failure in the landward direction was measured. Seventy-five percent of the seedlings failed in the root system. The remainder failed near the base of the stem. Larger seedlings were more likely to fail at the roots. Seedlings growing outside of mangrove overstory on coral rubble were 3.5 times more strongly anchored than those growing within the mangrove overstory on sand. In spite of directional loading by waves and on-shore breezes, the deflection resistance did not vary systematically with pulling direction. Seedling anchorage varies among locations with different overstory and substrate conditions, likely due to differences in competition and acclimation to wind and wave energy along with differences in rooting among substrates.  相似文献   

19.
The recruitment of native seedlings is often reduced in areas where the invasive Amur honeysuckle (Lonicera maackii) is abundant. To address this recruitment problem, we evaluated the effectiveness of L. maackii eradication methods and restoration efforts using seedlings of six native tree species planted within eradication and unmanipulated (control) plots. Two eradication methods using glyphosate herbicide were evaluated: cut and paint and stem injection with an EZ‐Ject lance. Lonicera maackii density and biomass as well as microenvironmental characteristics were measured to study their effects on seedling growth and survivorship. Mean biomass of Amur honeysuckle was 361 ± 69 kg/ha, and density was 21,380 ± 3,171 plants/ha. Both eradication treatments were effective in killing L. maackii (≥ 94%). The injection treatment was most effective on large L. maackii individuals (>1.5 cm diameter), was 43% faster to apply than cutting and painting and less fatiguing for the operator, decreased operator exposure to herbicide, and minimized impact to nontarget vegetation. Deer browse tree protectors were used on half of the seedlings, but did not affect survivorship or growth. After 3 years, survival of native seedlings was significantly less where L. maackii was left intact (32 ± 3%) compared with the eradication plots (p < 0.002). Seedling survival was significantly different between cut (51 ± 3%) and injected (45 ± 3%) plots. Species had different final percent survival and rates of mortality. Species survival differed greatly by species (in descending order): Fraxinus pennsylvanica > Quercus muehlenbergiiPrunus serotinaJuglans nigra > Cercis canadensis > Cornus florida. Survivorship and growth of native seedlings was affected by a severe first‐year drought and by site location. One site exhibited greater spring soil moisture, pH, percent open canopy, and had greater survivorship relative to the other site (55 ± 2 vs. 30 ± 2%). Overall, both L. maackii eradication methods were successful, but restorationists should be aware of the potential for differential survivorship of native seedlings depending on species identity and microenvironmental conditions.  相似文献   

20.
Hansen  U.  Schneiderheinze  J.  Rank  B. 《Photosynthetica》2002,40(3):369-374
Foliage of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) was collected in a mixed pine/oak forest at canopy positions differing in radiation environment. In both species, chlorophyll (Chl) a/b ratios were higher in foliage of canopy positions exposed to higher irradiance as compared to more shaded crown layers. Throughout the growing season, pine needles exhibited significantly lower Chl a/b ratios than oak leaves acclimated to a similar photon availability. Hence, pine needles showed shade-type pigment characteristics relative to foliage of oak. At a given radiation environment, pine needles tended to contain more neoxanthin and lutein per unit of Chl than oak leaves. The differences in pigment composition between foliage of pine and oak can be explained by a higher ratio of outer antennae Chl to core complex Chl in needles of P. sylvestris which enhances the efficiency of photon capture under limiting irradiance. The shade-type pigment composition of pine relative to oak foliage could have been due to a reduced mesophyll internal photon exposure of chloroplasts in needles of Scots pine, resulting from their xeromorphic anatomy. Hence, the higher drought tolerance of pine needles could be achieved at the expense of shade tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号