首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS), whereas the ubiquitous porcine circovirus type 1 (PCV1) is nonpathogenic for pigs. We report here the construction and characterization of two chimeric infectious DNA clones of PCV1 and PCV2. The chimeric PCV1-2 clone contains the PCV2 capsid gene cloned in the backbone of the nonpathogenic PCV1 genome. A reciprocal chimeric PCV2-1 DNA clone was also constructed by replacing the PCV2 capsid gene with that of PCV1 in the backbone of the PCV2 genome. The PCV1, PCV2, and chimeric PCV1-2 and PCV2-1 DNA clones were all shown to be infectious in PK-15 cells, and their growth characteristics in vitro were determined and compared. To evaluate the immunogenicity and pathogenicity of the chimeric infectious DNA clones, 40 specific-pathogen-free (SPF) pigs were randomly assigned into five groups of eight pigs each. Group 1 pigs received phosphate-buffered saline as the negative control. Group 2 pigs were each injected in the superficial inguinal lymph nodes with 200 micro g of the PCV1 infectious DNA clone. Group 3 pigs were each similarly injected with 200 micro g of the PCV2 infectious DNA clone, group 4 pigs were each injected with 200 micro g of the chimeric PCV1-2 infectious DNA clone, and group 5 pigs were each injected with 200 micro g of the reciprocal chimeric PCV2-1 infectious DNA clone. As expected, seroconversion to antibodies to the PCV2 capsid antigen was detected in group 3 and group 4 pigs. Group 2 and 5 pigs all seroconverted to PCV1 antibody. Gross and microscopic lesions in various tissues of animals inoculated with the PCV2 infectious DNA clone were significantly more severe than those found in pigs inoculated with PCV1, chimeric PCV1-2, and reciprocal chimeric PCV2-1 infectious DNA clones. These data indicated that the chimeric PCV1-2 virus with the immunogenic ORF2 capsid gene of pathogenic PCV2 cloned into the nonpathogenic PCV1 genomic backbone induces a specific antibody response to the pathogenic PCV2 capsid antigen but is attenuated in pigs. Future studies are warranted to evaluate the usefulness of the chimeric PCV1-2 infectious DNA clone as a genetically engineered live-attenuated vaccine against PCV2 infection and PMWS.  相似文献   

2.
A chimeric PCV1-2 clone containing the PCV2 capsid gene cloned into the backbone of the nonpathogenic PCV1 genome was recently generated based on PCV2 and PCV1 strains isolated in China. The efficacy of this available candidate inactivated vaccine was evaluated by subjecting conventional pigs to intramuscular immunization with the inactivated chimeric PCV1-2 virus, followed by challenge with wild-type PCV2 strain. By 35 days post-vaccination (DPV), all vaccinated pigs had developed seroconversion, having high indirect immunofluorescence assay (IFA) titers of antibody and neutralizing antibody against PCV2. By 21 days post-challenge, gross and microscopic lesions of lymph nodes and lungs in non-vaccinated but challenged pigs were significantly more severe than those found in the vaccinated group. PCV2 viral copy loads detected in the tracheobronchial lymph nodes or serum samples of vaccinated pigs were significantly smaller than those in non-vaccinated but challenged pigs (P ≤ 0.05). The results suggest that inactivated PCV1-2 is effective in inducing protective immunity against PCV2 infection.  相似文献   

3.
A chimeric porcine circovirus (PCV1-2) with the capsid gene of pathogenic PCV2 cloned into the genomic backbone of nonpathogenic PCV1 is attenuated in pigs but elicits protective immunity against PCV2. In this study, short epitope tags were inserted into the C terminus of the capsid protein of the chimeric PCV1-2 vaccine virus, resulting in a tractable marker virus that is infectious both in vitro and in vivo. Pigs experimentally infected with the epitope-tagged PCV1-2 vaccine viruses produced tag-specific antibodies, as well as anti-PCV2 neutralizing antibodies, indicating that the epitope-tagged viruses could potentially serve as a positive-marker modified live-attenuated vaccine.  相似文献   

4.
嵌合猪圆环病毒PCV1-2的构建及其感染性初步鉴定   总被引:2,自引:0,他引:2  
猪Ⅱ型圆环病毒(PCV2)是当前严重危害养猪业的重要病原之一。目前,世界上还没有有效疫苗用于该病毒的免疫预防。该研究利用PCR方法,将PCV2的ORF2基因替换猪Ⅰ型圆环病毒(PCV1)的ORF2基因,构建了以PCV1基因组为骨架的嵌合病毒(PCV1-2)分子克隆(pSK2PCV1-2)。将该分子克隆转染PK-15细胞并连续盲传5代,用RT-PCR方法可以在转染后盲传的细胞中检测到PCV1的ORF1 mRNA和PCV2的ORF2 mRNA,但检测不到PCV1的ORF2 mRNA和PCV2的ORF1 mRNA。间接免疫荧光检测显示在盲传第5代的细胞中有PCV2 ORF2蛋白的表达,表达蛋白主要分布于细胞核。该研究初步证实构建的PCV1-2分子克隆转染细胞后可以形成具有感染性的嵌合病毒,从而为更深入研究嵌合病毒生物学特性奠定了基础。  相似文献   

5.
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. To identify potential genetic determinants for virulence and replication, we serially passaged a PCV2 isolate 120 times in PK-15 cells. The viruses harvested at virus passages 1 (VP1) and 120 (VP120) were biologically, genetically, and experimentally characterized. The PCV2 VP120 virus replicated in PK-15 cells to a titer similar to that of the PK-15 cell line-derived nonpathogenic PCV1 but replicated more efficiently than PCV2 VP1 with a difference of about 1 log unit in the titers. The complete genomic sequences of viruses at passages 0, 30, 60, 90, and 120 were determined. After 120 passages, only two nucleotide mutations were identified in the entire genome, and both were located in the capsid gene: the mutations were located at nucleotide positions 328 (C328G) and 573 (A573C). The C328G mutation, in which a proline at position 110 of the capsid protein changed to an alanine (P110A), occurred at passage 30 and remained in the subsequent passages. The second mutation, A573C, resulting in a change from an arginine to a serine at position 191 (R191S), appeared at passage 120. To experimentally characterize the VP120 virus, 31 specific-pathogen-free pigs were randomly divided into three groups. Ten pigs in group 1 received phosphate-buffered saline as negative controls. Each pig in group 2 (11 pigs) was inoculated intramuscularly and intranasally with 10(4.9) 50% tissue culture infective doses (TCID(50)) of PCV2 VP120. Each pig in group 3 (10 pigs) was similarly inoculated with 10(4.9) TCID(50) of PCV2 VP1. Viremia was detected in 9 of 10 pigs in the PCV2 VP1 group with a mean duration of 3 weeks, but in only 4 of 11 pigs in the PCV2 VP120 group with a mean duration of 1.6 weeks. The PCV2 genomic copy numbers in serum in the PCV2 VP1 group were significantly higher than those in the PCV2 VP120 group (P < 0.0001). Gross and histopathologic lesions in pigs inoculated with PCV2 VP1 were more severe than those inoculated with PCV2 VP120 at both day 21 and 42 necropsies (P = 0.0032 and P = 0.0274, respectively). Taken together, the results from this study indicated that the P110A and R191S mutations in the capsid of PCV2 enhanced the growth ability of PCV2 in vitro and attenuated the virus in vivo. This finding has important implications for PCV2 vaccine development.  相似文献   

6.
Type 2 porcine circovirus (PCV2) is associated with postweaning multisystemic wasting syndrome in pigs, whereas the genetically related type 1 PCV (PCV1) is nonpathogenic. In this study, seven monoclonal antibodies (MAbs) against PCV2-ORF2 capsid protein were generated, biologically characterized, and subsequently used to map the antigenic sites of PCV2 capsid protein by using infectious PCV DNA clones containing PCV1/PCV2-ORF2 chimeras. The PCV1/PCV2-ORF2 chimeras were constructed by serial deletions of PCV2-ORF2 and replacement with the corresponding sequences of the PCV1-ORF2. The reactivities of chimeric PCV1/PCV2 clones in transfected PK-15 cells with the seven MAbs were detected by an immunofluorescence assay (IFA). The chimera (r140) with a deletion of 47 amino acids at the N terminus of PCV2-ORF2 reacted strongly to all seven MAbs. Expanding the deletion of PCV2-ORF2 from residues 47 to 57 (r175) abolished the recognition of MAb 3B7, 3C11, 4A10, 6H2, or 8F6 to the chimera. Further deletion of PCV2-ORF2 to 62 residues disrupted the binding of this chimera to all seven MAbs. IFA reactivities with all MAbs were absent when residues 165 to 233 at the C terminus of PCV2-ORF2 was replaced with that of PCV1-ORF2. Extending the sequence of PCV2-ORF2 from residues 165 (r464) to 185 (r526), 200 (r588), or 224 (r652) restored the ability of the three chimeras to react with MAbs 3C11, 6H2, 9H7, and 12G3 but not with 8F6, 3B7, or 4A10. When the four amino acids at the C terminus of r588 were replaced with that of PCV2-ORF2, the resulting chimera (r588F) reacted with all seven MAbs. The results from this study suggest that these seven MAbs recognized at least five different but overlapping conformational epitopes within residues 47 to 63 and 165 to 200 and the last four amino acids at the C terminus of the PCV2 capsid protein.  相似文献   

7.
8.
Commercially available inactivated vaccines against porcine circovirus type 2 (PCV2) have been shown to be effective in reducing PCV2 viremia. Live-attenuated, orally administered vaccines are widely used in the swine industry for several pathogens because of their ease of use yet they are not currently available for PCV2 and efficacy. The aims of this study were to determine the efficacy of a live-attenuated chimeric PCV2 vaccine in a dual-challenge model using PCV2b and porcine reproductive and respiratory syndrome virus (PRRSV) and to compare intramuscular (IM) and oral (PO) routes of vaccination. Eighty-three 2-week-old pigs were randomized into 12 treatment groups: four vaccinated IM, four vaccinated PO and four non-vaccinated (control) groups. Vaccination was performed at 3 weeks of age using a PCV1-2a live-attenuated vaccine followed by no challenge, or challenge with PCV2b, PRRSV or a combination of PCV2b and PRRSV at 7 weeks of age. IM administration of the vaccine elicited an anti-PCV2 antibody response between 14 and 28 days post vaccination, 21/28 of the pigs being seropositive prior to challenge. In contrast, the anti-PCV2 antibody response in PO vaccinated pigs was delayed, only 1/27 of the pigs being seropositive at challenge. At 21 days post challenge, PCV2 DNA loads were reduced by 80.4% in the IM vaccinated groups and by 29.6% in the PO vaccinated groups. PCV1-2a (vaccine) viremia was not identified in any of the pigs. Under the conditions of this study, the live attenuated PCV1-2a vaccine was safe and provided immune protection resulting in reduction of viremia. The IM route provided the most effective protection.  相似文献   

9.
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases in pigs. The sole structural capsid protein of PCV2, Cap, consists of major antigenic domains, but little is known about the assembly of capsid particles. The purpose of this study is to produce a large amount of Cap protein using Escherichia coli expression system for further studying the essential sequences contributing to formation of particles. By using codon optimization of rare arginine codons near the 5'-end of the cap gene for E. coli, a full-length Cap without any fusion tag recombinant protein (Cap1-233) was expressed and proceeded to form virus-like particles (VLPs) in normal Cap appearance that resembled the authentic PCV2 capsid. The N-terminal deletion mutant (Cap51-233) deleted the nuclear localization signal (NLS) domain, while the internal deletion mutant (CapΔ51-103) deleted a likely dimerization domain that failed to form VLPs. The unique Cys108 substitution mutant (CapC/S) exhibited most irregular aggregates, and only few VLPs were formed. These results suggest that the N-terminal region within the residues 1 to 103 possessing the NLS and dimerization domains are essential for self-assembly of stable Cap VLPs, and the unique Cys108 plays an important role in the integrity of VLPs. The immunogenicity of PCV2 VLPs was further evaluated by immunization of pigs followed by challenge infection. The Cap1-233-immunized pigs demonstrated specific antibody immune responses and are prevented from PCV2 challenge, thus implying its potential use for a VLP-based PCV2 vaccine.  相似文献   

10.
The objectives of this study were to determine if vaccination against porcine circovirus type 2 (PCV2) or previous PCV2 infection of the dam are sufficient to prevent fetal infection when dams are artificially inseminated with PCV2-spiked semen. Nine sows (Sus domestica) were allocated into three groups of three dams each: The PCV2 naïve negative control Group 1 was artificially inseminated with extended PCV2 DNA negative semen during estrus, whereas the extended semen used in the vaccinated Group 2 (PCV2 vaccine was given 8 wk before insemination) and PCV2-exposed Group 3 (infected with PCV2 12 wk before insemination) was spiked with 5 mL of PCV2 inoculum with a titer of 104.2 tissue culture infectious dose (TCID50) per milliliter at each breeding. The dams in the vaccinated and PCV2-exposed groups were positive for PCV2 antibody but negative for PCV2 DNA in serum at the time of insemination. Three negative control dams, two vaccinated dams, and three dams with previous PCV2 exposure became pregnant and maintained pregnancy to term. After artificial insemination, viremia was detected in one of three vaccinated dams and in two of three dams with previous PCV2 exposure. At farrowing, PCV2 infection was not detected in any piglets or fetuses expelled from the negative control dams or from dams with previous PCV2 exposure. In litters of the vaccinated dams, 15 of 24 live-born piglets were PCV2 viremic at birth, with 6 of 26 fetuses having detectable PCV2 antigen in tissues. In conclusion, vaccine-induced immunity did not prevent fetal infection in this sow model using semen spiked with PCV2.  相似文献   

11.
The objectives were to determine whether the amount of porcine circovirus type 2 (PCV2) shed in semen increased in boars experimentally coinfected with Mycoplasma hyopneumoniae (MHYO), and whether PCV2 vaccination of boars prior to PCV2 exposure reduced PCV2 viremia and virus shedding in semen. Twelve specific-pathogen-free PCV2- and MHYO-naïve boars were randomly and equally assigned to one of four groups. Six boars were vaccinated against PCV2 (VAC) on Day 0; three PCV2 vaccinated and three non-vaccinated boars were inoculated with MHYO on Day 21, and all boars were challenged with PCV2 on Day 35. The four treatment groups included PCV2-Infected (I), VAC-PCV2-I, MHYO-PCV2-Coinfected (CoI), and VAC-MHYO-PCV2-CoI. Semen, blood swabs, feces, and serum samples were collected weekly until Day 70. All vaccinated boars had seroconverted to PCV2 by Day 35. Between Days 28 and 35, MHYO boars developed moderate respiratory disease, characterized by coughing, respiratory distress, mucopurulent nasal discharge and loss of body condition. One MHYO-PCV2-CoI boar died on Day 50. Boars in the PCV2-I and MHYO-PCV2-CoI groups had significantly higher PCV2 DNA loads in blood swabs than the remaining boars. Moreover, PCV2 vaccination significantly reduced the incidence and amount of PCV2 shedding in semen and feces. In summary, although concurrent MHYO infection did not influence PCV2 shedding patterns, coinfection of boars with PCV2 and MHYO resulted in severe clinical disease and viral shedding was significantly decreased by PCV2 vaccination.  相似文献   

12.
13.
猪圆环病毒2型ORF2编码与病毒毒力相关的结构蛋白--核衣壳蛋白(Cap),该蛋白可以用于PCV2感染的血清学调查,但不同区域的PCV2分离株的ORF2特别是其抗原表位序列存在一定的突变.本研究将PCV2浙江分离株ORF2的主要抗原表位以及PCV1 ORF2进行了原核表达,将分别纯化的融合蛋白Cap2s和Cap1s免疫SPF兔后制备多抗,并进一步分析了纯化蛋白的免疫原性和多抗的特性.Western blot结果表明无论Cap2s和Cap1s均能与两个多抗发生交叉反应,而PCV2或PCV1阳性猪血清只能分别特异性地识别Cap2s和Cap1s.IFA结果则证明两个多抗对于天然Cap蛋白无交叉反应性.利用Cap2s作为包被抗原对13个猪场的259份血清样品的PCV2抗体进行ELISA检测,平均阳性率为80.69%(209/259),而各猪场的阳性率差异较大(48.28%~100%).以上结果表明Cap2s可作为一个型特异性抗原用于浙江省本地猪场猪群血清中PCV2抗体的监控,而其多抗也可用于免疫组化对PCV2感染进行有效诊断.  相似文献   

14.
【目的】研制猪伪狂犬病毒(PRV)和猪圆环病毒2型(PCV2)的二联活疫苗,并用猪IL-18作为免疫佐剂。【方法】将猪IL-18基因插入到质粒p GO中,获得的重组转移质粒p GO18与猪PRV弱毒HB98株DNA共转染ST细胞,并进行空斑筛选和纯化;RT-PCR和Western blot分别从转录和蛋白水平鉴定其表达情况。将重组病毒PGO18和PGO、PRV弱毒株HB98、PCV2灭活商品苗和1640细胞培养基分别免疫6周龄雌性昆明小鼠,4周后二次免疫,二免后4周用PCV2 DF强毒和PRV Min/A强毒接种小鼠。通过ELISA、血清中和试验和流式细胞术及攻毒保护试验评价重组病毒的免疫原性。【结果】获得了重组病毒PGO18,并且可在ST细胞内表达;PGO18可诱导小鼠机体产生PCV2的ELISA和PRV的中和抗体水平,刺激CD3+、CD4+、CD8+T细胞亚群的增殖,且能有效抵抗PCV2和PRV强毒攻击。【结论】IL-18基因可增强重组病毒的免疫效果,使重组病毒具有良好的免疫原性,有望成为防治PCV2和PRV的候选疫苗株。  相似文献   

15.
The virus porcine circovirus type 2 (PCV2) is associated with different disease entities, including reproductive failure. The objective of this study was to investigate the use of a semen processing technique for the elimination of infectious PCV2 in semen. PCV2 was chosen as a model virus because of its small size, high resistance to inactivation and as a known risk factor for boar semen contamination. Aliquots of ejaculates were spiked with PCV2 and processed by a double processing technique, consisting of Single Layer Centrifugation on Androcoll?-P followed by a "swim-up" procedure. Samples were collected from the resulting fractions during the selection process and analyzed for the presence of infectious PCV2. Virus titres were determined by performing a 50% tissue culture infective dose assay (TCID(50)) by end point dilution and with the use of an indirect peroxidise monolayer assay technique. With an initial infectious virus titre of 3.25-3.82 (TCID(50))/50μL the two-step sperm selection method eliminated 2.92±0.23 logs of infectious PCV2, corresponding to more than 99% reduction. Sperm quality was not affected by the selection procedure.  相似文献   

16.
Porcine circovirus type 1 (PCV1), originally isolated as a contaminant of PK-15 cells, is nonpathogenic, whereas porcine circovirus type 2 (PCV2) causes an economically important disease in pigs. To determine the factors affecting virus replication, we constructed chimeric viruses by swapping open reading frame 1 (ORF1) (rep) or the origin of replication (Ori) between PCV1 and PCV2 and compared the replication efficiencies of the chimeric viruses in PK-15 cells. The results showed that the replication factors of PCV1 and PCV2 are fully exchangeable and, most importantly, that both the Ori and rep of PCV1 enhance the virus replication efficiencies of the chimeric viruses with the PCV2 backbone.Porcine circovirus (PCV) is a single-stranded DNA virus in the family Circoviridae (34). Type 1 PCV (PCV1) was discovered in 1974 as a contaminant of porcine kidney cell line PK-15 and is nonpathogenic in pigs (31-33). Type 2 PCV (PCV2) was discovered in piglets with postweaning multisystemic wasting syndrome (PMWS) in the mid-1990s and causes porcine circovirus-associated disease (PCVAD) (1, 9, 10, 25). PCV1 and PCV2 have similar genomic organizations, with two major ambisense open reading frames (ORFs) (16). ORF1 (rep) encodes two viral replication-associated proteins, Rep and Rep′, by differential splicing (4, 6, 21, 22). The Rep and Rep′ proteins bind to specific sequences within the origin of replication (Ori) located in the intergenic region, and both are responsible for viral replication (5, 7, 8, 21, 23, 28, 29). ORF2 (cap) encodes the immunogenic capsid protein (Cap) (26). PCV1 and PCV2 share approximately 80%, 82%, and 62% nucleotide sequence identity in the Ori, rep, and cap, respectively (19).In vitro studies using a reporter gene-based assay system showed that the replication factors of PCV1 and PCV2 are functionally interchangeable (2-6, 22), although this finding has not yet been validated in a live infectious-virus system. We have previously shown that chimeras of PCV in which cap has been exchanged between PCV1 and PCV2 are infectious both in vitro and in vivo (15), and an inactivated vaccine based on the PCV1-PCV2 cap (PCV1-cap2) chimera is used in the vaccination program against PCVAD (13, 15, 18, 27).PCV1 replicates more efficiently than PCV2 in PK-15 cells (14, 15); thus, we hypothesized that the Ori or rep is directly responsible for the differences in replication efficiencies. The objectives of this study were to demonstrate that the Ori and rep are interchangeable between PCV1 and PCV2 in a live-virus system and to determine the effects of swapped heterologous replication factors on virus replication efficiency in vitro.  相似文献   

17.
Postweaning multisystemic wasting syndrome (PMWS) is a disease of nursery and fattening pigs characterized by growth retardation, paleness of the skin, dyspnea, and increased mortality rates. Porcine circovirus 2 (PCV2) has been demonstrated to be the cause of PMWS. However, other factors are needed for full development of the syndrome, and porcine reproductive and respiratory syndrome virus (PRRSV) infection has been suggested to be one of them. Twenty-four conventional 5-week-old pigs were distributed in four groups: control (n = 5), PRRSV inoculated (n = 5), PCV2 inoculated (n = 7), and PRRSV and PCV2 inoculated (n = 7). The two groups inoculated with PRRSV showed growth retardation. Pigs inoculated with both PRRSV and PCV2 had increased rectal temperature. One of these pigs developed wasting, had severe respiratory distress, and died. The most important microscopic lesion in pigs inoculated with PCV2 was lymphocyte depletion with histiocytic infiltration of the lymphoid organs, more severe and in a wider range of tissues in doubly inoculated pigs. Interstitial pneumonia was observed in the three inoculated groups. PCV2 nucleic acid was found by in situ hybridization in larger amounts and in a wider range of lymphoid tissues in PRRSV- and PCV2-inoculated than in PCV2-inoculated pigs. TaqMan PCR was performed to quantify the PCV2 loads in serum during the experiment. PCV2 loads were higher in doubly inoculated pigs than in pigs inoculated with PCV2 alone. These findings indicate that severe disease can be reproduced in conventional 5-week-old pigs by inoculation of PRRSV and PCV2. Moreover, these results support the hypothesis that PRRSV infection enhances PCV2 replication.  相似文献   

18.
The attenuated S- strain of Japanese encephalitis virus was produced from a wild strain of this virus by serial cultivation in primary bovine kidney cell cultures at 30 degrees C. Pigs were inoculated with it and examined for ability to produce antibody and protect themselves from infection with a wild strain used for challenge. In pigs inoculated with a single dose of 10(6.5) approximately 10(7.5) TCID50 of the S- strain, the neutralizing antibody titer or hemagglutination-inhibiting antibody (HI) titer increased to 10 approximately 320. An antibody titer exceeding 10 was maintained for 2 approximately 9 weeks. In pigs inoculated twice with 10(6.5) approximately 10(7.0) TCID50 of the S- strain, HI titer increased to 80 approximately 640. In many of these pigs, HI titers of 80 approximately 160 persisted for more than 6 weeks. Pigs inoculated once or twice with 10(7.0) approximately 10(7.5) TCID50 of the S- strain were challenged by inoculation with 10(4.5) approximately 10(5.5) TCID50 of a wild strain and examined for the occurrence of viremia. As a result, an ability to protect from infection was demonstrated in pigs which showed an antibody titer surpassing 10 at the time of challenge. Pregnant sows inoculated with 10(7.0) TCID50 of the S- strain were challenged by inoculation with 10(7.0) TCID50 of a wild strain. Neither death nor infection occurred to any fetus harbored by them. From these results, it is concluded that the S- strain can be used as live virus vaccine for porcine practice.  相似文献   

19.
猪2型圆环病毒原核表达产物的免疫原性测定   总被引:1,自引:0,他引:1  
目的检测猪2型圆环病毒(PCV2)全基因组原核表达产物的免疫原性。方法根据PCV2JXL株序列(GenBank登录号AY491310),设计合成引物,利用多聚酶链式反应(PCR)从含有PCV2接种猪肾细胞PK15中扩增了Cap蛋白的氨基端片段(737-421nt),克隆入上游带有谷光苷肽-S-转移酶的原核表达载体pGEX-6p-1中,获得重组质粒pGEX-PCV737-421。PCV2Cap蛋白羧基端(426-37nt)和Rep蛋白已在过去的研究中分别融合表达。利用IPTG对3种重组大肠杆菌BL21进行诱导,进行聚丙烯酰胺凝胶电泳分析(SDS-PAGE)以及对PCV2阳性猪多抗血清的蛋白免疫印迹试验,在此基础上,将3种SDS-PAGE分离粗纯的重组表达产物碾碎后分别免疫BALB/c小鼠,用获得的抗鼠血清与PCV2病毒感染PK15细胞做间接免疫荧光抗体试验(IFA)。结果PCV2Cap蛋白的氨基端片段能在大肠杆菌中表达,且Cap蛋白羧基端和Rep蛋白的原核表达产物都能在免疫印迹试验中被PCV2阳性猪血清检测出特异性条带,重组蛋白免疫鼠血清可在IFA试验中观察到特异性的荧光分布,即检测到培养细胞中的病毒抗原。结论PCV2全基因组都可以用原核系统高效表达,且表达产物具有免疫原性。  相似文献   

20.
ABSTRACT: BACKGROUND: Since 1999, field evidence of transplacental infection by porcine circovirus type 2 (PCV2) and reproductive failure has been reported in pigs. The objective of this study was to evaluate the clinical and pathological consequences of PCV2 infection in conventional PCV2-seropositive gilts by insemination with PCV2b-spiked semen. RESULTS: Six PCV2 seropositive gilts were inseminated with PCV2b-supplemented semen (infected) and three animals with semen and cell culture medium (controls). Only three out of the six infected animals were pregnant by ultrasonography on day 29 after insemination, while two out of the three controls were pregnant. One control gilt aborted on day 23 after insemination but not due to PVC2. Viraemia was demonstrated in four out of six infected and in one control gilt that became infected with PCV2a. Anti-PCV2 antibody titres showed dynamic variations in the infected group throughout the study. Among infected gilts, the animal with the lowest anti-PCV2 titre (1/100) at the beginning of the experiment and another that reached a similar low value during the experiment showed evident seroconversion over time and had also PCV2 positive foetuses. One placenta displayed mild focal necrosis of the chorionic epithelium positively stained by immunohistochemistry for PCV2 antigen. CONCLUSIONS: PCV2-seropositive gilts can be infected with PCV2 after intrauterine exposure and low maternal antibody titre may increase the probability of a foetal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号