首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.  相似文献   

2.
Probiotics are live microorganisms that exert health-promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well-studied probiotic strain Bifidobacterium animalis subsp. lactis BB-12, proteins secreted by the bacterium, i.e. belonging to the extracellular proteome present in the culture medium, were identified by 2-DE coupled with MALDI-TOF MS. Among the 74 distinct proteins identified, 31 are predicted to carry out their physiological role either outside the cell or on its surface. These proteins include solute-binding proteins for oligosaccharides, amino acids and manganese, cell wall-metabolizing proteins, and 18 proteins that have been described to interact with human host epithelial cells or extracellular matrix proteins. The potential functions include binding of plasminogen, formation of fimbriae, adhesion to collagen, attachment to mucin and intestinal cells as well as induction of immunomodulative response. These findings suggest a role of the proteins in colonization of the gastrointestinal tract, adhesion to host tissues, or immunomodulation of the host immune system. The identification of proteins predicted to be involved in such interactions can pave the way towards well targeted studies of the protein-mediated contacts between bacteria and the host, with the goal to enhance the understanding of the mode of action of probiotic bacteria.  相似文献   

3.
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay.  相似文献   

4.
The interaction of Streptococcus pneumoniae with human plasmin(ogen) represents a mechanism to enhance bacterial virulence by capturing surface-associated proteolytic activity in the infected host. Plasminogen binds to surface displayed pneumococcal alpha-enolase (Eno) and is subsequently activated to the serine protease plasmin by host-derived tissue plasminogen activator (tPA) or urokinase (uPA). The C-terminal lysyl residues of Eno at position 433 and 434 were identified as a binding site for the kringle motifs of plasmin(ogen) which contain lysine binding sites. In this report we have identified a novel internal plamin(ogen)-binding site of Eno by investigating the protein-protein interaction. Plasmin(ogen)-binding activity of C-terminal mutated Eno proteins used in binding assays as well as surface plasmon resonance studies suggested that an additional binding motif of Eno is involved in the Eno-plasmin(ogen) complex formation. The analysis of spot synthesized synthetic peptides representing Eno sequences identified a peptide of nine amino acids located between amino acids 248-256 as the minimal second binding epitope mediating binding of plasminogen to Eno. Binding of radiolabelled plasminogen to viable pneumococci was competitively inhibited by a synthetic peptide FYDKERKVYD representing the novel internal plasmin(ogen)-binding motif of Eno. In contrast, a synthetic peptide with amino acid substitutions at critical positions in the internal binding motif identified by systematic mutational analysis did not inhibit binding of plasminogen to pneumococci. Pneumococcal mutants expressing alpha-enolase with amino acid substitutions in the internal binding motif showed a substantially reduced plasminogen-binding activity. The virulence of these mutants was also attenuated in a mouse model of intranasal infection indicating the significance of the novel plasminogen-binding motif in the pathogenesis of pneumococcal diseases.  相似文献   

5.
Pathogenic microbes acquire the human plasma protein plasminogen to their surface. In this article, we characterize binding of this important coagulation regulator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surface protein E (PE) as a new plasminogen-binding protein. Plasminogen binds dose dependently to intact bacteria and to purified PE. The plasminogen-PE interaction is mediated by lysine residues and is also affected by ionic strength. The H. influenzae PE knockout strain (nontypeable H. influenzae 3655Δpe) bound plasminogen with ~65% lower intensity as compared with the wild-type, PE-expressing strain. In addition, PE expressed ectopically on the surface of Escherichia coli also bound plasminogen. Plasminogen, either attached to intact H. influenzae or bound to PE, was accessible for urokinase plasminogen activator. The converted active plasmin cleaved the synthetic substrate S-2251, and the natural substrates fibrinogen and C3b. Using synthetic peptides that cover the complete sequence of the PE protein, the major plasminogen-binding region was localized to a linear 28-aa-long N-terminal peptide, which represents aa 41-68. PE binds plasminogen and also vitronectin, and the two human plasma proteins compete for PE binding. Thus, PE is a major plasminogen-binding protein of the Gram-negative bacterium H. influenzae, and when converted to plasmin, PE-bound plasmin aids in immune evasion and contributes to bacterial virulence.  相似文献   

6.
Group A streptococci are common human pathogens that cause a variety of infections. They express M proteins which are important cell wall-bound type-specific virulence factors. We have found that a set of strains, associated primarily with skin infections, express M proteins that bind plasminogen and plasmin with high affinity. The binding is mediated by a 13-amino-acid internal repeated sequence located in the N-terminal surface-exposed portion of these M proteins. This sequence binds to kringle 2 in plasminogen, a domain that is not involved in the interaction with streptokinase, a potent group A streptococcal activator of plasminogen. It could be demonstrated that plasminogen, absorbed from plasma by growing group A streptococci expressing the plasminogen-binding M proteins, could be activated by exogenous and endogenous streptokinase, thereby providing the bacteria with a surface-associated enzyme that could act on the tissue barriers in the infected host.  相似文献   

7.
The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.  相似文献   

8.
Surface-associated plasmin(ogen) may contribute to the invasive properties of various cells. Analysis of plasmin(ogen)-binding surface proteins is therefore of interest. The N-terminal variable regions of M-like (ML) proteins from five different group A streptococcal serotypes (33,41,52,53 and 56) exhibiting the plasminogen-binding phenotype were cloned and expressed in Escherichia coli . The recombinant proteins all bound plasminogen with high affinity. The binding involved the kringle domains of plasminogen and was blocked by a lysine analogue, 6-aminohexanoic acid, indicating that lysine residues in the M-like proteins participate in the interaction. Sequence analysis revealed that the proteins contain common 13–16-amino-acid tandem repeats, each with a single central lysine residue. Experiments with fusion proteins and a 30-amino-acid synthetic peptide demonstrated that these repeats harbour the major plasminogen-binding site in the ML53 protein, as well as a binding site for the tissue-type plasminogen activator. Replacement of the lysine in the first repeat with alanine reduced the plasminogen-binding capacity of the ML53 protein by 80%. The results precisely localize the binding domain in a plasminogen surface receptor, thereby providing a unique ligand for the analysis of interactions between kringles and proteins with internal kringle-binding determinants.  相似文献   

9.
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is transmitted through tick bite. Lyme borreliosis evolves in two stages: a primary red skin lesion called erythema migrans; later on, invasive bacteria disseminate to distant sites inducing secondary manifestations (neuropathies, arthritis, carditis, late skin disorders). It has been previously suggested that the ospC gene could be associated with invasiveness in humans depending on its sequence. Here, we confirm the pattern of invasiveness, according to B. burgdorferi sensu stricto (B. b. ss) ospC group, using the mouse as an experimental host of B. b. ss. As it has been shown that the host plasminogen activation system is used by B. burgdorferi to disseminate throughout the host, we studied the interaction of plasminogen with OspC proteins from invasive and non-invasive groups of B. b. ss. Using two methods, ELISA and surface plasmon resonance, we demonstrate that indeed OspC is a plasminogen-binding protein. Moreover, significant differences in binding affinity for plasminogen are correlated with different invasiveness patterns in mice. These results suggest that the correlation between ospC polymorphism and Borrelia invasiveness in humans is linked, at least in part, to differences in OspC affinity for plasminogen.  相似文献   

10.
The Lyme disease spirochete Borrelia burgdorferi lacks endogenous, surface-exposed proteases. In order to efficiently disseminate throughout the host and penetrate tissue barriers, borreliae rely on recruitment of host proteases, such as plasmin(ogen). Here we report the identification of a novel plasminogen-binding protein, BBA70. Binding of plasminogen is dose-dependent and is affected by ionic strength. The BBA70-plasminogen interaction is mediated by lysine residues, primarily located in a putative C-terminal α-helix of BBA70. These lysine residues appear to interact with the lysine-binding sites in plasminogen kringle domain 4 because a deletion mutant of plasminogen lacking that domain was unable to bind to BBA70. Bound to BBA70, plasminogen activated by urokinase-type plasminogen activator was able to degrade both a synthetic chromogenic substrate and the natural substrate fibrinogen. Furthermore, BBA70-bound plasmin was able to degrade the central complement proteins C3b and C5 and inhibited the bacteriolytic effects of complement. Consistent with these functional activities, BBA70 is located on the borrelial outer surface. Additionally, serological evidence demonstrated that BBA70 is produced during mammalian infection. Taken together, recruitment and activation of plasminogen could play a beneficial role in dissemination of B. burgdorferi in the human host and may possibly aid the spirochete in escaping the defense mechanisms of innate immunity.  相似文献   

11.
The surface subproteome of Listeria monocytogenes that includes many proteins already known to be involved in virulence and interaction with host cells has been characterized. A new method for the isolation of a defined surface proteome of low complexity has been established based on serial extraction of proteins by different salts at high concentration, and in all 55 proteins were identified by N-terminal sequencing and mass spectrometry. About 16% of these proteins are of unknown function and three proteins have no orthologue in the nonpathogenic L. innocua and might be involved in virulence mechanisms. Remarkably, a relatively high number of proteins with a function in the cytoplasmic compartment was identified in this surface proteome. These proteins had neither predicted or detectable signal peptides nor could any modification be observed except removal of the N-terminal methionine. Enolase (Lmo2455) is one of these proteins. It was shown to be present in the cell wall of the pathogen by immunoelectron microscopy and, along with heat shock factor DnaK (Lmo1473), elongation factor TU (Lmo2653), and glyceraldehyde-3-phosphate dehydrogenase (Lmo2459), it was found to be able to bind human plasminogen in overlay blots and surface plasmon resonance (SPR) experiments. The KD values of these interactions were determined by SPR measurements. The data indicate a possible role of these proteins as receptors for human plasminogen on the bacterial cell surface. The potential role of this recruitment of a host protease for extracellular invasion mechanisms is discussed.  相似文献   

12.
Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.  相似文献   

13.
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of bacteria in the human colonic niche. Bifidobacterium animalis subsp. lactis, a probiotic bacterium with documented health benefits, is applied largely in fermented dairy products. In this study, the effect of bile salts on proteomes of B. animalis subsp. lactis IPLA 4549 and its bile-resistant derivative B. animalis subsp. lactis 4549dOx was analyzed, leading to the identification of proteins which may represent the targets of bile salt response and adaptation in B. animalis subsp. lactis. The comparison of the wild-type and the bile-resistant strain responses allowed us to hypothesize about the resistance mechanisms acquired by the derivative resistant strain and about the bile salt response in B. animalis subsp. lactis. In addition, significant differences in the levels of metabolic end products of the bifid shunt and in the redox status of the cells were also detected, which correlate with some differences observed between the proteomes. These results indicate that adaptation and response to bile in B. animalis subsp. lactis involve several physiological mechanisms that are jointly dedicated to reduce the deleterious impact of bile on the cell's physiology.  相似文献   

14.
MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.  相似文献   

15.
Bifidobacterium animalis subsp. lactis BLC1 is a probiotic bacterium that is widely exploited by food industries as the active ingredient of various functional foods. Here we report the complete genome sequence of B. animalis subsp. lactis BLC1, which is expected to provide insights into the biology of this health-promoting microorganism and improve our understanding of its phylogenetic relatedness with other members of the B. animalis subsp. lactis taxon.  相似文献   

16.
Schistosoma bovis is a ruminant haematic parasite that lives for years in the mesenteric vessels of the host. The aim of this work was to investigate the ability of adult S. bovis worms to interact with plasminogen, a central component in the host fibrinolytic system. Confocal microscopy analysis revealed that plasminogen bound to the tegument surface of the male-but not female-S. bovis worms and that this binding was strongly dependent on lysine residues. It was also observed that a protein extract of the worm tegument (TG) had the capacity to generate plasmin and to enhance the plasmin generation by the tissue-type plasminogen activator. Proteomic analysis of the TG extract identified 10 plasminogen-binding proteins, among which the major ones were enolase, glyceraldehyde-3-phosphate dehydrogenase and actin. This study represents the first report about the binding of plasminogen to Schistosoma sp. proteins.  相似文献   

17.
Floden AM  Watt JA  Brissette CA 《PloS one》2011,6(11):e27502
Borrelia burgdorferi is the causative agent of Lyme disease, the most commonly reported arthropod-borne disease in the United States. B. burgdorferi is a highly invasive bacterium, yet lacks extracellular protease activity. In order to aid in its dissemination, B. burgdorferi binds plasminogen, a component of the hosts' fibrinolytic system. Plasminogen bound to the surface of B. burgdorferi can then be activated to the protease plasmin, facilitating the bacterium's penetration of endothelial cell layers and degradation of extracellular matrix components. Enolases are highly conserved proteins with no sorting sequences or lipoprotein anchor sites, yet many bacteria have enolases bound to their outer surfaces. B. burgdorferi enolase is both a cytoplasmic and membrane associated protein. Enolases from other pathogenic bacteria are known to bind plasminogen. We confirmed the surface localization of B. burgdorferi enolase by in situ protease degradation assay and immunoelectron microscopy. We then demonstrated that B. burgdorferi enolase binds plasminogen in a dose-dependent manner. Lysine residues were critical for binding of plasminogen to enolase, as the lysine analog εaminocaproic acid significantly inhibited binding. Ionic interactions did not play a significant role in plasminogen binding by enolase, as excess NaCl had no effects on the interaction. Plasminogen bound to recombinant enolase could be converted to active plasmin. We conclude that B. burgdorferi enolase is a moonlighting cytoplasmic protein which also associates with the bacterial outer surface and facilitates binding to host plasminogen.  相似文献   

18.
Enolase represents a multifunctional protein involved in basic energy metabolism and plasminogen binding and activation at the surface of prokaryotic pathogens. A complete cDNA of 1615 bp of an alpha-enolase from Onchocerca volvulus (Ov-ENO) was isolated using a PCR-based approach. The open reading frame encoded for 435 amino acids and the high degree of conservation included the crucial amino acid residues that participate in the formation of the catalytic site, Mg(2+) binding site, and a hydrophobic motif reported to relate to surface expression. A 1089-bp fragment was expressed in a N-terminal 6 x His-tag expression vector in Escherichia coli. By immunohistological analysis using anti-Ov-ENO rabbit antibodies, native enolase could be detected in most tissues of adult O. volvulus, microfilariae, and infective larvae. Intense staining was observed in the muscles, where the energy consumption is high. The purified recombinant protein fragment revealed plasminogen binding activity in a blot-overlay assay employing anti-plasminogen antibodies. In sera from individuals infected with O. volvulus, IgG antibodies reactive with recombinant Ov-ENO were demonstrated by immunoblot and enzyme-linked immunosorbent analyses. The plasminogen-binding property of O. volvulus alpha-enolase may support plasmin-mediated proteolysis including degradation of host's extracellular matrix thereby promoting the migration of larval stages through tissues. The recognition by antibodies in sera of O. volvulus-infected persons indicate an involvement of the protein in the interaction between the parasite and the human host.  相似文献   

19.
The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell line HT29 was determined for a collection of 12 B. bifidum strains. In four of them-B. bifidum LMG13195, DSM20456, DSM20239, and A8-the involvement of surface-exposed macromolecules in the aggregation phenomenon was determined. The aggregation of B. bifidum A8 and DSM20456 was abolished after treatment with proteinase K, this effect being more pronounced for the strain A8. Furthermore, a mucin binding assay of B. bifidum A8 surface proteins showed a high adhesive capability for its transaldolase (Tal). The localization of this enzyme on the surface of B. bifidum A8 was unequivocally demonstrated by immunogold electron microscopy experiments. The gene encoding Tal from B. bifidum A8 was expressed in Lactococcus lactis, and the protein was purified to homogeneity. The pure protein was able to restore the autoaggregation phenotype of proteinase K-treated B. bifidum A8 cells. A recombinant L. lactis strain, engineered to secrete Tal, displayed a mucin- binding level more than three times higher than the strain not producing the transaldolase. These findings suggest that Tal, when exposed on the cell surface of B. bifidum, could act as an important colonization factor favoring its establishment in the gut.  相似文献   

20.
Staphylococcus epidermidis is the leading cause of device-related infections. These infections require an initial colonization step in which S. epidermidis adheres to the implanted material. This process is usually mediated by specific bacterial surface proteins and host factors coating the foreign device. Some of these surface proteins belong to the serine-aspartate repeat (Sdr) family, which includes adhesins from Staphyloccus aureus and S. epidermidis. Using a heterologous expression system in Lactococcus lactis to overcome possible staphylococcal adherence redundancy we observed that one of these Sdr proteins, SdrF, mediates binding to type I collagen when present on the lactococcal cell surface. We used lactococcal recombinant strains, a protein-protein interaction assay and Western ligand blot analysis to demonstrate that this process occurs via the B domain of SdrF and both the alpha1 and alpha2 chains of type I collagen. It was also found that a single B domain repeat of S. epidermidis 9491 retains the capacity to bind to type I collagen. We demonstrated that the putative ligand binding N-terminal A domain does not bind to collagen which suggests that SdrF might be a multiligand adhesin. Antibodies directed against the B domain significantly reduce in vitro adherence of S. epidermidis to immobilized collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号