首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cao L  Kenchington E  Zouros E 《Genetics》2004,166(2):883-894
In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.  相似文献   

2.
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

3.
Sato M  Sato K 《Autophagy》2012,8(3):424-425
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

4.
Shitara H  Kaneda H  Sato A  Inoue K  Ogura A  Yonekawa H  Hayashi JI 《Genetics》2000,156(3):1277-1284
Exclusion of paternal mitochondria in fertilized mammalian eggs is very stringent and ensures strictly maternal mtDNA inheritance. In this study, to examine whether elimination was specific to sperm mitochondria, we microinjected spermatid or liver mitochondria into mouse embryos. Congenic B6-mt(spr) strain mice, which are different from C57BL/6J (B6) strain mice (Mus musculus domesticus) only in possessing M. spretus mtDNA, were used as mitochondrial donors. B6-mt(spr) mice and a quantitative PCR method enabled selective estimation of the amount of M. spretus mtDNA introduced even in the presence of host M. m. domesticus mtDNA and monitoring subsequent changes of its amount during embryogenesis. Results showed that M. spretus mtDNA in spermatid mitochondria was not eliminated by the blastocyst stage, probably due to the introduction of a larger amount of spermatid mtDNA than of sperm mtDNA into embryos on fertilization. However, spermatid-derived M. spretus mtDNA was eliminated by the time of birth, whereas liver-derived M. spretus mtDNA was still present in most newborn mice, even though its amount introduced was significantly less than that of spermatid mtDNA. These observations suggest that mitochondria from spermatids but not from liver have specific factors that ensure their selective elimination and resultant elimination of mtDNA in them, and that the occurrence of elimination is not limited to early stage embryos, but continues throughout embryogenesis.  相似文献   

5.
A study was undertaken to determine: (1) the potential toxicity of a fluorogenic vital dye, fluorescein diacetate (FDA), on hamster and bovine pre-implantation embryos; and (2) whether a correlation exists between the fluorescence of an embryo and its ability to continue development.For the toxicity trial, hamster eight-cell embryos were randomly assigned to one of three groups (control, FDA+UV light or UV light only), and early bovine blastocysts to either a control or FDA+UV light group. Embryos were cultured for 24 h and scored for development to the blastocyst stage. Embryos of both species developed equally well in vitro regardless of whether or not they had been exposed to FDA and UV light. Treated and untreated control embryos from both species were transferred to synchronized recipients. Similar numbers of pregnancies resulted after transfer of treated and untreated embryos from both species.In the second experiment, the proportions of fluorescing embryos were compared using two groups of hamster eight-cell embryos: (1) freshly collected embryos; and (2) cultured embryos that failed to develop. Significantly more of the fresh eight-cell embryos fluoresced than did the cultured, undeveloped embryos. No false negative results were obtained (embryos that developed but failed to fluoresce). However, approximately half of the non-developing, cultured embryos showed varying degrees of fluorescence (false positive). Embryos showing “false positive” fluorescence may be viable, but incapable of further development due to deficiencies of the culture medium.The procedures used in the FDA viability assay were not detrimental to development of late cleavage stage mammalian embryos and thus seem suitable for rapid screening of manipulated embryos for potential damage. However, further work is needed to establish the significance of the false positive results encountered in this study.  相似文献   

6.
We have used ratiometric confocal microscopy and three fluorescence techniques to study the distribution and activity of mitochondria in frog oocytes during the early stages of oogenesis. Mitochondria in frog oocytes during oogenesis were characterised by a high ratio in the 'mitochondrial cloud' and perinuclear region and a low ratio in mitochondria freely dispersed within the cytoplasm. We tested whether the high ratio visualised by the three techniques represented mitochondrial membrane potential by perturbing the mitochondrial membrane potential. Carbonyl cyanide p-(trifluoromethyl)phenylhydrazone (FCCP) caused the immediate destruction of the membrane potential, and consequent loss of fluorescence from the membrane-potential-sensitive confocal channel. In contrast, nigericin caused an increase in membrane potential represented by a steady increase in fluorescence ratio. These data demonstrate that mitochondrial activity can be measured during oogenesis in frog oocytes, and suggest that the mitochondrial cloud and perinuclear regions are characterised by highly active mitochondria.  相似文献   

7.
Hyphal tip-growing organisms have a high density of tip-localized mitochondria which maintain a membrane potential based on Rhodamine 123 fluorescence, but do not produce ATP based on the absence of significant oxygen consumption. Two possible roles of these mitochondria in tip growth were examined: Calcium sequestration and biogenesis, because tip-high cytoplasmic calcium gradients are a common feature of tip-growing organisms, and the volume expansion as the tip extends would require a continuous supply of additional mitochondria. Co-localization of calcium-sensitive fluorescent dye and mitochondria-specific fluorescent dyes showed that the tip-localized mitochondria do contain calcium, and therefore, may function in calcium clearance from the cytoplasm. Short-term inhibition of DNA synthesis or mitochondrial protein synthesis did not affect either tip growth, or mitochondrial shape or distribution. Therefore, mitochondrial biogenesis may not occur from the tip-localized mitochondria in hyphal organisms.  相似文献   

8.
BACKGROUND: Chloromethyl-X-rosamine (CMXRos) and MitoTracker Green (MTG) have proved to be useful dyes with which to measure mitochondrial function. CMXRos is a lipophilic cationic fluorescent dye that is concentrated inside mitochondria by their negative mitochondrial membrane potential (MMP). MTG fluorescence has been used as a measure of mitochondrial mass independent of MMP. The fluorescence ratio of the two dyes is a relative measure of the MMP independent of mitochondrial mass. Because MTG was recently reported to be sensitive to MMP, we have reevaluated the effects of loss of MMP on MTG and CMXRos fluorescence, using both flow cytometry and laser scanning confocal microscopy (LSCM). METHODS: Using flow cytometry, the relative fluorescence of CMXRos, R123, and MTG was determined in human lymphoblastoid cell lines (LCLs) with or without carbonyl cyanide p-trifluoromethoxylphenyl-hydrazone (FCCP), used to collapse the MMP. LSCM analysis was also used to evaluate the effect of FCCP on MTG and CMXRos fluorescence of mouse cells and viable lenses in culture. The cytotoxicity of the dyes was determined using flow analysis of endogenous NADH fluorescence. The sensitivity of MTG fluorescence to H(2)O(2) was also evaluated using flow cytometry. RESULTS: CMXRos fluorescence was dependent on MMP, whereas MTG fluorescence was not affected by MMP, using either flow or LSCM. Specific staining of mitochondria was seen with both dyes in all cell types tested, without evidence of cytotoxicity, as determined by NADH levels. H(2)O(2) damage slightly increased MTG staining of cells. CONCLUSIONS: Our results indicate that CMXRos is a nontoxic sensitive indicator of relative changes in MMP, whereas MTG is relatively insensitive to MMP and oxidative stress, using both flow and LSCM analyses, provided optimal staining conditions are used. In addition, these dyes can be useful for the study of mitochondrial morphology and function in whole tissues, using LSCM.  相似文献   

9.
The present study was designed to investigate the effect of vitrification on mitochondrial distribution, membrane potential (Δψ) and microtubule distribution in mouse 2‐PN embryos, as well as to document the relationship between mitochondrial distribution and developmental ability of those embryos. Mitochondrial distribution was examined by fluorescence microscopy technology. Results indicated that: (1) The rate of mitochondrial ring formation around pronuclei in vitrified 2‐PN embryos was significantly lower than in fresh ones (67.3 ± 3.0% vs. 84.9 ± 3.1%) (P < 0.05). (2) Blastocyst development rate of vitrified 2‐PN embryos without mitochondrial rings (61.7 ± 4.5%) was significantly lower than that of vitrified embryos with mitochondrial rings (82.1 ± 2.8%). (3) Following staining by 5,5′,6,6′‐tetrachloro‐1,1′,3,3′‐tetraethyl‐imidacarbo‐cyanine iodide (JC‐1), most red‐colored mitochondria (high Δψ) were distributed peripherally around pronuclei and along cell membranes of fresh 2‐PN embryos. Conversely, red‐colored mitochondria were greatly diminished in vitrified embryos, with green mitochondria (low Δψ) evenly distributed throughout the cytoplasm. The proportion of fresh 2‐PN embryos with obvious aggregation of high Δψ mitochondria (84.2 ± 2.2%) was significantly higher than that of vitrified embryos (26.7 ± 3.0%) (P < 0.05). (4) The proportion of fresh embryos with microtubules distributed around pronuclei (83.5 ± 3.4%) was similar to that of vitrified embryos (74.7 ± 2.5%). In conclusion, vitrification affected mitochondrial distribution and decreased the mitochondrial membrane potential in mouse 2‐PN embryos, events which may affect subsequent developmental viability of such embryos. Mol. Reprod. Dev. 76: 1056–1063, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
It had not previously been known whether synthesis of nuclear-encoded mitochondrial subunits occurs in pre-implantation embryos. We have used cytoplasmic injections of antisense RNA transcribed in vitro to study this question. Capped, in vitro transcribed RNA antisense to either cytochrome coxidase subunit IV or VIIc injected into each cell at the two-cell stage markedly inhibited synthesis of adenine nucleotides by the 8- to 16-cell stage, whereas injection of the cognate sense RNAs gave levels similar to those previously published for normal embryos. These results strongly suggest that translation of nuclear-encoded mRNAs for mitochondrial subunits is required during pre-implantation development. It was of additional interest that, not only was ATP decreased, but ADP and AMP as well, with the effect that the charge ratio remained constant. The results also suggest, therefore, that the mechanism by which cells normally regulate their charge ratio, thought to be with adenylate deaminase, is already in place. © 1993Wiley-Liss, Inc.  相似文献   

11.
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO2, respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb’s cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.  相似文献   

12.
Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter‐ than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter‐ and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex‐specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error‐prone mechanism, but rather, it may be under complex genetic control.  相似文献   

13.
14.
Species of the family Mytilidae have 2 mitochondrial genomes, one that is transmitted through the egg and one that is transmitted through the sperm. In the Mytilus edulis species complex (M. edulis, M. galloprovincialis, and M. trossulus) there is also a strong mother-dependent sex-ratio bias in favor of one or the other sex among progeny from pair matings. In a previous study, we have shown that sperm mitochondria enter the egg and that their behavior during cell division is different depending on whether the egg originated from a female- or male-biased mother. Specifically, in eggs from females that produce mostly or exclusively daughters, sperm mitochondria disperse randomly among cells after egg division. In eggs from females that produce predominantly sons, sperm mitochondria tend to stay together in the same cell. Here, we extend these observations and show that in 2- and 4-cell embryos from male-biased mothers most sperm mitochondria are located near or at the cleavage furrow of the major cell, in contrast to embryos from female-biased mothers where there is no preferential association of sperm mitochondria with the cleavage furrow. This observation provides evidence for an early developmental mechanism through which sperm mitochondria are preferentially channeled into the primordial cells of male embryos, thus making the paternal mitochondrial genome the dominant mtDNA component of the male germ line.  相似文献   

15.
The cytotoxic and protective effects of selected synthetic chalcone analogues have been shown in previous studies. We studied their cytotoxic effect on the modification of mitochondrial membrane potential and on DNA. The first spectral information about the methoxy group as well as the dimethylamino substituent in E-2-arylmethylene-1-benzosuberones molecule was obtained by absorption and emission spectra. The cytotoxic effect of both cyclic chalcone analogues on DNA were detected by alkaline single-cell gel electrophoresis. Better fluorescent chalcone analogue E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone was studied further in fresh isolated mitochondria. The decrease of rat liver mitochondria membrane potential (Δψ) was observed by fluorescence emission spectra. For the collapsing of mitochondrial potentials and as the negative control of mitochondrial function the CCCP uncoupler was used. The absorption maximum of the methoxy group was found at a shorter wavelength (λ = 335 nm) than that of the dimethylamino group (λ = 406 nm). The excitation spectra were very similar to the absorption spectra for both molecules but the emission spectra showed a better fluorescence for dimethylamino derivative. After the addition of E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone to the intact mitochondria the decrease of mitochondrial membrane potential Δψ was observed by emisssion fluorescence spectra. Both cyclic chalcone analogues induced DNA damage, which was detected by alkaline comet assay. Mainly the apoptotic cells were detected, but necrotic cells were also present. Similarities in the percentages of DNA migration from the head were observed in both treatment groups. Both benzosuberones, with dimethylamino- and methoxy- substituent, were very active biologically, as shown by DNA results of the comet assay. Due to its better fluorescence properties, only the fluorophore with dimethylamino substituent was selected for further study of the function of rat liver mitochondria. Decline of mitochondrial function as well as mitochondrial DNA damage were evident between experimental and control groups.  相似文献   

16.
Quantitative analysis of spontaneous mitochondrial depolarizations   总被引:8,自引:0,他引:8       下载免费PDF全文
Spontaneous transient depolarizations in mitochondrial membrane potential (DeltaPsi(m)), mitochondrial flickers, have been observed in isolated mitochondria and intact cells using the fluorescent probe, tetramethylrhodamine ethyl ester (TMRE). In theory, the ratio of [TMRE] in cytosol and mitochondrion allows DeltaPsi(m) to be calculated with the Nernst equation, but this has proven difficult in practice due to fluorescence quenching and binding of dye to mitochondrial membranes. We developed a new method to determine the amplitude of flickers in terms of millivolts of depolarization. TMRE fluorescence was monitored using high-speed, high-sensitivity three-dimensional imaging to track individual mitochondria in freshly dissociated smooth muscle cells. Resting mitochondrial fluorescence, an exponential function of resting DeltaPsi(m), varied among mitochondria and was approximately normally distributed. Spontaneous changes in mitochondrial fluorescence, indicating depolarizations and repolarizations in DeltaPsi(m), were observed. The depolarizations were reversible and did not result in permanent depolarization of the mitochondria. The magnitude of the flickers ranged from <10 mV to >100 mV with a mean of 17.6 +/- 1.0 mV (n = 360) and a distribution skewed to smaller values. Nearly all mitochondria flickered, and they did so independently of one another, indicating that mitochondria function as independent units in the myocytes employed here.  相似文献   

17.
Assessment of equine sperm mitochondrial function using JC-1   总被引:9,自引:0,他引:9  
The fluorescent carbocyanine dye, JC-1, labels mitochondria with high membrane potential orange and mitochondria with low membrane potential green. Evaluation of mitochondrial membrane potential with JC-1 has been used in a variety of cell types, including bull spermatozoa; however, JC-1 staining has not yet been reported for equine spermatozoa. The aim of this study was to apply JC-1 staining and assessment by flow cytometry or a fluorescence microplate reader for evaluation of mitochondrial function of equine spermatozoa. Six ejaculates from four stallions were collected and centrifuged through a Percoll gradient (PERC). Spermatozoa were resuspended to 25 x 10(6) cells/mL, samples were split, and one sample was repeatedly flash frozen (FF) in LN2 and thawed. The following gradients of PERC:FF were prepared: 100:0 (100), 75:25(75), 50:50 (50), 25:75 (25) and 0:100 (0). Samples were stained with 2.0 microM JC-1 and assessed for staining by flow cytometry and by a fluorescence microplate reader. A total of 10,000 gated events was analyzed per sample with flow cytometry. The mean percentage of cells staining orange for the 100, 75, 50, 25 and 0 treatments was 92.5, 72.8, 53.4, 27.3 and 7.3, respectively. The expected percentage of spermatozoa forming JC-1 aggregates was correlated with the actual percentage of orange labeled sperm cells determined by flow cytometry (r2=0.98). Conversely, JC-1 monomer formation was negatively correlated with expected mitochondrial membrane potential (r2=-0.98). The blank corrected orange fluorescence, assessed by microplate assay, was significantly (P<0.0001) correlated with the expected (r2=0.49) and with the flow cytometric (r2=0.50) determination of percentage of spermatozoa with mitochondria of high membrane potential. Total orange and orange:green fluorescence was also correlated with mitochondrial function. These results indicate that JC-1 staining can accurately detect changes in mitochondrial membrane potential of equine spermatozoa. The relative fluorescence of JC-1 labeling patterns of equine spermatozoa can be accurately and objectively determined by flow cytometry and by a fluorescence microplate reader assay.  相似文献   

18.
With the identification of a patient with mutated mitochondrial DNA (mtDNA) of paternal origin, it has been unequivocally proven that not only does paternal mtDNA survive in the zygote, but it can also contribute substantially to the mtDNA pool of adult, human skeletal muscle. The questions are: how often does paternal mtDNA inheritance occur and what mechanisms are involved? In this paper, we will review current knowledge on the fate of sperm mitochondria after fertilization and discuss the impact paternal inheritance may have on our understanding of mitochondrial biology.  相似文献   

19.
Observations of Lan Bo Chen’s group using a mitochondria-selective fluorochrome 5,5’,6,6’- tetrachloro- 1,1’,3,3’- tetraethylbenzimidazolocarbocyanine iodide (JC-1) indicate that mitochondria in situ may have zones of different electrochemical potential along their length. This was indicated by the formation of J-aggregates of this dye at distinct sites along a single mitochondrion. Also, intensity variations along single mitochondria were found with diamino-styryl-pyridinium methiodide (DASPMI), another fluorochrome that selectively stains mitochondria depending on their electrochemical potential. DASPMI exchanges easily with the cytoplasm and changes its quantum yield when bound to mitochondrial membranes. Therefore, fluorescence intensity is primarily controlled by the membrane environment rather than by mass accumulation. Two possible explanations of intramitochondrial fluorescence intensity variations have to be discussed: variations in the amount of mitochondrial inner membrane per unit of projection area (or voxel), and differences in the electrochemical gradient. This problem has been approached by comparing fluoro-micrographs of mitochondria in endothelial cells stained with either JC-1 or DASPMI with electron micrographs of the same mitochondria after fixation with glutardialdehyde and osmium tetroxide and ultrathin sectioning. JC-1 red fluorescence (revealing J-aggregate formation) as well as high-intensity staining with DASPMI correlate roughly with the local thickness of mitochondria; no differences in the crista organization are revealed for those areas or mitochondria exhibiting red JC-1 fluorescence and those with green fluorescence. The distance between red fluorescing areas in a single mitochondrion seem to be caused by competition for dye molecules placed in between centres of JC-1 aggregation. Isolated mitochondria are of uniform small size and spherical shape; therefore, no differences in shape interfere with JC-1 staining. Thus JC-1 may be an appropriate indicator of membrane potential in isolated mitochondria. In living cells mitochondria often are large and elongated, and thus the situation is not straightforward to interpret. However, evidence is provided that there are submitochondrial zones, which differ in membrane potential from one adjacent area to another, because DASPMI staining of intramitochondrial zones reveals differences in fluorescence intensity and preferred photodamage of these areas. In some cases separation of the zones of higher membrane potential by cristae traversing the whole diameter of a mitochondrion has been observed. Local photobleaching of stained mitochondria results in a loss of fluorescence along the total length of a mitochondrion. However, this type of bleaching develops over tens of seconds, not in the very short time range (e.g. ms) expected from the discharge of all the membranes if they were electrically coupled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号