首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 747 毫秒
1.
The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I*, although at a slower rate than oxidation of I by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe-HOCl or X-HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the nonenzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria: [reaction: see text] The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

2.
Based on the suggested mechanism of the Raschig catalytic iodine-azide reaction the use of azide for the azotometric estimation of sulfenyl iodide groups is proposed. In the Raschig reaction reduction of iodine to iodide and oxidation of azide to elementary nitrogen is specifically catalyzed by bivalent sulfur compounds; the reaction is usually formulated to proceed via hypothetical sulfenyl iodide derivatives. This has been explored with the use of available, relatively stable sulfenyl iodide derivatives. The -SI group oxidizes azide to nitrogen stoichiometrically: 1 mole of a sulfenyl iodide consumes 2 moles of sodium azide and yields 3 moles of elementary nitrogen. The specificity and limitations of the method are discussed.  相似文献   

3.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

4.
The synthesis, structure, and magnetic properties of a dinuclear Co(II) complex of a tridentate verdazyl radical are presented. The reaction of a tetrazane containing a 4,6-bis(2-pyridyl)-pyrimid-2-yl substituent with cobalt chloride hexahydrate in aerated solution leads to in situ oxidation of the tetrazane to a verdazyl radical which is coordinated to Co(II) in a tridentate manner. The second tridentate coordination site of the verdazyl remains vacant. The crystal structure reveals the complex to be dimeric, with the cobalt ions linked by two bridging chlorides. The structure of Co2Cl2 core is highly asymmetric, with two short (2.3317 Å) and two long (2.744 Å) Co-Cl bonds. There are relatively short intermolecular contacts between coordinated verdazyl radicals in the solid state. Magnetic susceptibility data from 2 to 300 K suggest intramolecular ferromagnetic interactions, and modeling of the high-temperature data produced a best fit with JCo-verdazyl of +20 cm−1.  相似文献   

5.
Oxidation of NADPH catalyzed by the peroxidase/H2O2 system is known to require the presence of mediating molecules. Using either lactoperoxidase or horseradish peroxidase, we demonstrated that in the peroxidase/H2O2 system, NADPH oxidation was mediated by iodide. The oxidation product was the iodinated NADP. This product was shown to possess spectral characteristics different from those of NADP+ and NADPH, since for iodinated NADP, increased absorbance was observed in the 280-nm region and was directly proportional to the rate of iodination. It is suggested that oxidation and iodination of NADPH proceed via a single reaction between the intermediary iodide oxidation species and NADPH. Experiments with different molecules of NADPH analogues indicated that iodination occurred in the nicotinamide part of the NADPH molecule.  相似文献   

6.
Abstract

The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I·, although at a slower rate than oxidation of I- by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe–HOCl or X–HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the non-enzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria:

I2+H2O=HOI+I-+H+</ p>

I-+I2=I3-

The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

7.
S ummary . Iodide oxidation was catalysed by a haemoprotein peroxidase system produced by the marine bacterium Pseudomonas iodooxidans . The presence of starch was essential for iodide oxidation, and its influence was not attributable to its indicator properties. The polysaccharides glycogen and cellulose, but not pectin, could substitute for starch in the reaction. Dextrin, maltose and glucose were not effective. No explanation can be given at this stage for the requirement of a high polysaccharide for bacterial iodide oxidation.  相似文献   

8.
Mechanically pre-activated K2PtCl4 salt consumes methyl iodide producing methyl chloride at room temperature. The reaction mechanism includes the following steps sequence: oxidative addition of methyl iodide to platinum(II) complexes with intermediate formation of methyl platinum(IV) complexes and further decomposition of the latter in the course of innersphere reductive elimination yielding methyl chloride. The first step of the reaction proceeds owing to the assistance of active centers regenerated in the course of each event of MeI into MeCl transformation taking part in the chain halogen substitution process. It could be assumed that the role of active centers is played by coordinatively unsaturated platinum(II) complexes located on the surface. These species bearing a positive efficient charge can render electrophilic assistance for the nucleophilic substitution. The chain termination can be caused by recombination of coordinatively unsaturated platinum(II) complexes and interstitial chloride ions forming an inactive K2PtCl4 complex.  相似文献   

9.
Glutathione S-transferase activity with alkyl-, aryl-, or aralkyl iodide substrates gave rise to blue zones in polyacrylamide gels containing small amounts of starch after oxidation by hydrogen peroxide of the iodide released during the transferase reaction. The technique is applicable to enzymes separated by electrophoresis or by isoelectric focusing and has been used with enzyme preparations from the rat and from the house fly. The parameters affecting the localization technique are discussed.  相似文献   

10.
The N-alkylation of iron(III) complexes of the tripodal imidazolate complexes derived from the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 2-imidazolecarboxaldehyde (2ImH), 4-imidazolecarboxaldehyde (4ImH) or 4-methyl-5-imidazolecarboxaldehyde (5-Me4ImH) was investigated. While each complex possesses three nucleophilic imidazolate nitrogen atoms, only the complex derived from 2-imidazolecarboxaldehyde, Fetren(2Im)3, was completely alkylated under the ambient conditions used in this work. Using methyl iodide as the alkylating agent, a correlation between spin state of the product and degree of methylation was observed. Low spin iron complexes were more nucleophilic than high spin systems. The structure reactivity relationship was exploited in the reaction of Fetren(2Im)3 with methyl iodide and allyl iodide to give [Fetren(N-Me2Im)3]2+ and [Fetren(N-allyl2Im)3]2+. The products are iron(II) due to reduction of the iron(III) by iodide ion which builds up in the reaction mixture as the alkylation reaction proceeds. These complexes were characterized by a number of methods including EA, IR, ES-MS, Mössbauer spectroscopy, magnetic susceptibility and X-ray diffraction.  相似文献   

11.
The mineralization rate of LC-[1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] (DDT) was reduced by 90% on the 18th day in fungal cultures of Phanerochaete chrysosporium in the presence of 8 mM ethylenediamine tetraacetic acid (EDTA). In the presence of 8 mM N-N-N'-N'-tetramethylenediamine (TEMED), the mineralization rate of 14C-DDT was reduced by 80%. In the presence of 2 mM or 10 mM EDTA, 95% inhibition of lignin peroxidase (LiP) mediated veratryl alcohol oxidase activity and 97% inhibition of LiP mediated iodide oxidase activity occurred. TEMED caused 79% inhibition of veratryl alcohol oxidase activity and 92% inhibition of iodide oxidase activity when the amount used was 2 mM and 10 mM, respectively. In the presence of Zn(II) with slight molar excess of the EDTA concentration, reversed the EDTA mediated non-competitive inhibition of LiP catalyzed veratryl alcohol or iodide oxidation, Zn(II) also reversed the inhibition of LiP catalyzed veratryl alcohol oxidase activity caused by chelators other than EDTA and TEMED. In addition to Zn(II), several other metal ions also relieved EDTA mediated inhibition of veratryl alcohol and iodide oxidase activity catalyzed by LiP. The ability of veratryl alcohol to inhibit iodide oxidation catalyzed by LiP showed that veratryl alcohol could inhibit LiP mediated iodide oxidase activity. Increasing the concentration of iodide was also shown to inhibit veratryl alcohol oxidation. Kinetic analysis showed that the reaction was competitive inhibition.  相似文献   

12.
Polyphenylene polymer preparation involves the cyclic trimerization polymerization of acetylated methyl benzoate with diacetyl benzene. Since the methyl benzoate groups do not take part in the polymerization they are present in high concentration. The ß-diketone ligands were placed on the surface by reaction of the methylbenzoate group with base and a methyl ketone and the triketone by reaction with base to give the ß-triketone. The ß-triketones can bind two metal ions in a known geometry that is suitable for bimetallic catalysis of the rapid polyelectron oxidation of catechols. The final catalytic surfaces were prepared by treating the chemically modified polymer with copper(II), iron(II) and palladium(II) acetonitrile complexes with non-coordinating BF4 as the anion. Since the metal ions contain no strongly coordinating ligand, they are very reactive species. These surfaces catalyzed the rapid air oxidation of 3,5-di-tert-butylcatechol (DTBC). The diketone surfaces gave only 3,5-di-tert-butyl-o-quinone (DTBQ) while the triketone surfaces gave ring-cleaved products, confirming the special catalytic effect of the triketone surface. Also, only the triketone catalysts showed any activity for ring cleavage oxidation of DTBQ. These catalysts were much more reactive than previous ones using the same polyphenylene polymer but without the methyl benzoate groups. With these polymers the di- and triketone groups were placed on the surface by chemical modification of the unpolymerized acetyl groups.  相似文献   

13.
Lactoperoxidase (EC 1.11.1.7) catalysed the oxidation of NADH by hydrogen peroxide in the presence of either thiocyanate, iodide or bromide. In the presence of thiocyanate, net oxidation of thiocyanate occurred simultaneously with the oxidation of NADH, but in the presence of iodide or bromide, only the oxidation of NADH occurred to a significant extent. In the presence of thiocyanate or bromide, NADH was oxidized to NAD(+) but in the presence of iodide, an oxidation product with spectral and chemical properties distinct from NAD(+) was formed. Thiocyanate, iodide and bromide appeared to function in the oxidation of NADH by themselves being oxidized to products which in turn oxidized NADH, rather than by activating the enzyme. Iodine, which oxidized NADH non-enzymically, appeared to be an intermediate in the oxidation of NADH in the presence of iodide. NADPH was oxidized similarly under the same conditions. An assessment was made of the rates of these oxidation reactions, together with the rates of other lactoperoxidase-catalysed reactions, at physiological concentrations of thiocyanate, iodide and bromide. The results indicated that in milk and saliva the oxidation of thiocyanate to a bacterial inhibitor was likely to predominate over the oxidation of NADH.  相似文献   

14.
The objective of the present study is to delineate the role of active site arginine and histidine residues of horseradish peroxidase (HRP) in controlling iodide oxidation using chemical modification technique. The arginine specific reagent, phenylglyoxal (PGO) irreversibly blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 25.12 min-1 M-1. Radiolabelled PGO incorporation studies indicate an essential role of a single arginine residue in enzyme inactivation. The enzyme can be protected both by iodide and an aromatic donor such as guaiacol. Moreover, guaiacol-protected enzyme can oxidise iodide and iodide-protected enzyme can oxidise guaiacol suggesting the regulatory role of the same active site arginine residue in both iodide and guaiacol binding. The protection constant (Kp) for iodide and guaiacol are 500 and 10 M respectively indicating higher affinity of guaiacol than iodide at this site. Donor binding studies indicate that guaiacol competitively inhibits iodide binding suggesting their interaction at the same binding site. Arginine-modified enzyme shows significant loss of iodide binding as shown by increased Kd value to 571 mM from the native enzyme (Kd = 150 mM). Although arginine-modified enzyme reacts with H2O2 to form compound II presumably at a slow rate, the latter is not reduced by iodide presumably due to low affinity binding.The role of the active site histidine residue in iodide oxidation was also studied after disubstitution reaction of the histidine imidazole nitrogens with diethylpyrocarbonate (DEPC), a histidine specific reagent. DEPC blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 0.66 min-1 M-1. Both the nitrogens (, ) of histidine imidazole were modified as evidenced by the characteristic peak at 222 nm. The enzyme is not protected by iodide suggesting that imidazolium ion is not involved in iodide binding. Moreover, DEPC-modified enzyme binds iodide similar to the native enzyme. However, the modified enzyme does not form compound II but forms compound I only with higher concentration of H2O2 suggesting the catalytic role of this histidine in the formation and autoreduction of compound I. Interestingly, compound I thus formed is not reduced by iodide indicating block of electron transport from the donor to the compound I. We suggest that an active site arginine residue regulates iodide binding while the histidine residue controls the electron transfer to the heme ferryl group during oxidation.  相似文献   

15.
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.  相似文献   

16.
Spectral scans in both the visible (650-450 nm) and the Soret (450-380 nm) regions were recorded for the native enzyme, Compound II, and Compound III of lactoperoxidase and thyroid peroxidase. Compound II for each enzyme (1.7 microM) was prepared by adding a slight excess of H2O2 (6 microM), whereas Compound III was prepared by adding a large excess of H2O2 (200 microM). After these compounds had been formed it was observed that they were slowly reconverted to the native enzyme in the absence of exogenous donors. The pathway of Compound III back to the native enzyme involved Compound II as an intermediate. Reconversion of Compound III to native enzyme was accompanied by the disappearance of H2O2 and generation of O2, with approximately 1 mol of O2 formed for each 2 mol of H2O2 that disappeared. A scheme is proposed to explain these observations, involving intermediate formation of the ferrous enzyme. According to the scheme, Compound III participates in a reaction cycle that effectively converts H2O2 to O2. Iodide markedly affected the interconversions between native enzyme, Compound II, and Compound III for lactoperoxidase and thyroid peroxidase. A low concentration of iodide (4 microM) completely blocked the formation of Compound II when lactoperoxidase or thyroid peroxidase was treated with 6 microM H2O2. When the enzymes were treated with 200 microM H2O2, the same low concentration of iodide completely blocked the formation of Compound III and largely prevented the enzyme degradation that otherwise occurred in the absence of iodide. These effects of iodide are readily explained by (i) the two-electron oxidation of iodide to hypoiodite by Compound I, which bypasses Compound II as an intermediate, and (ii) the rapid oxidation of H2O2 to O2 by the hypoiodite formed in the reaction between Compound I and iodide.  相似文献   

17.
Transthyretin amyloid formation occurs through a process of tetramer destabilization and partial unfolding. Small molecules, including the natural ligand thyroxine, stabilize the tetrameric form of the protein, and serve as inhibitors of amyloid formation. Crucial for TTR's ligand-binding properties are its three halogen-binding sites situated at the hormone-binding channel. In this study, we have performed a structural characterization of the binding of two halides, iodide and chloride, to TTR. Chlorides are known to shield charge repulsions at the tetrameric interface of TTR, which improve tetramer stability of the protein. Our study shows that iodides, like chlorides, provide tetramer stabilization in a concentration-dependent manner and at concentrations approximately 15-fold below that of chlorides. To elucidate binding sites of the halides, we took advantage of the anomalous scattering of iodide and used the single-wavelength anomalous dispersion (SAD) method to solve the iodide-bound TTR structure at 1.8 A resolution. The structure of chloride-bound TTR was determined at 1.9 A resolution using difference Fourier techniques. The refined structures showed iodides and chlorides bound at two of the three halogen-binding sites located at the hydrophobic channel. These sites therefore also function as halide-binding sites.  相似文献   

18.
Oxides or carbonates of lanthanides (Ln) are converted under mild conditions into the corresponding solvated anhydrous chlorides LnCl3(ether)n by hydrogen chloride produced in situ from thionyl chloride and water in the presence of 1,l2-dimethoxyethane under mild conditions.  相似文献   

19.
Interaction of an iodide ion with lactoperoxidase was studied by the use of 1H NMR, 127I NMR, and optical difference spectrum techniques. 1H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by 127I NMR, showing no competition with cyanide. Both 1H NMR and 127I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pKa value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.  相似文献   

20.
The regulation of thyroid metabolism by iodide involves numerous inhibitory effects. However, in unstimulated dog thyroid slices, a small inconstant stimulatory effect of iodide on H(2)O(2) generation is observed. The only other stimulatory effect reported with iodide is on [1-(14)C]glucose oxidation, i.e., on the pentose phosphate pathway. Because we have recently demonstrated that the pentose phosphate pathway is controlled by H(2)O(2) generation, we study here the effect of iodide on basal H(2)O(2) generation in thyroid slices from several species. Our data show that in sheep, pig, bovine, and to a lesser extent dog thyroid, iodide had a stimulatory effect on H(2)O(2) generation. In horse and human thyroid, an inconstant effect was observed. We demonstrate in dogs that the stimulatory effect of iodide is greater in thyroids deprived of iodide, raising the possibility that differences in thyroid iodide pool may account, at least in part, for the differences between the different species studied. This represents the first demonstration of an activation by iodide of a specialized thyroid function. In comparison with conditions in which an inhibitory effect of iodide on H(2)O(2) generation is observed, the stimulating effect was observed for lower concentrations and for a shorter incubation time with iodide. Such a dual control of H(2)O(2) generation by iodide has the physiological interest of promoting an efficient oxidation of iodide when the substrate is provided to a deficient gland and of avoiding excessive oxidation of iodide and thus synthesis of thyroid hormones when it is in excess. The activation of H(2)O(2) generation may also explain the well described toxic effect of acute administration of iodide on iodine-depleted thyroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号