首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Passive serotherapy can confer immediate protection against microbial infection, but methods to rapidly generate human neutralizing monoclonal antibodies are not yet available. We have developed an improved method for Epstein-Barr virus transformation of human B cells. We used this method to analyze the memory repertoire of a patient who recovered from severe acute respiratory syndrome coronavirus (SARS-CoV) infection and to isolate monoclonal antibodies specific for different viral proteins, including 35 antibodies with in vitro neutralizing activity ranging from 10(-8)M to 10(-11)M. One such antibody confers protection in vivo in a mouse model of SARS-CoV infection. These results show that it is possible to interrogate the memory repertoire of immune donors to rapidly and efficiently isolate neutralizing antibodies that have been selected in the course of natural infection.  相似文献   

2.
猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome, PRRS)是由猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)引起的高度接触性传染疾病,对社会经济造成重大损失。目前并未获得有效的中和抗体应用于科研及治疗中,所以建立一种筛选具有中和活性的单克隆抗体的方法,对PRRSV防治及抗原位点筛选具有重要意义。单克隆抗体在人类和动物的众多疾病治疗及诊断中得到广泛应用,而针对不同病原如何筛选出有效的中和抗体是目前急需解决的问题。在单克隆抗体筛选的众多方法中,B细胞永生化方法是一种有效的且大概率能获得单克隆中和抗体的方法。通过将bcl-6和bcl-xl两个基因中间通过f2a序列连接后构建到一个载体上,进行逆转录病毒包装。包装成熟的逆转录病毒感染免疫PRRSV的猪源淋巴细胞,并使用加入CD40L和IL21细胞因子的完全培养基培养,然后使用CD21作为筛选标记通过磁珠法进行B细胞筛选,最后对筛选得到的B细胞单克隆化并进行检测,验证是否有抗体分泌。结果...  相似文献   

3.
It has been shown previously that the major neutralizing epitopes in simian immunodeficiency virus (SIV) are discontinuous and conformation dependent and that the V3 loop, in contrast to that of human immunodeficiency virus (HIV) type 1, does not by itself elicit neutralizing antibodies (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 89:1418-1422, 1992). We now present data showing that on the basis of fractionation of infected macaque sera, protease digestion of the envelope, and binding properties of two neutralizing monoclonal antibodies to SIV and SIV-HIV chimeric envelope proteins, changes in V3 can disrupt the conformation-dependent neutralization region. The chimeric protein did not produce significant neutralizing antibodies against either SIV or HIV. We also report that neutralizing antibodies elicited by recombinant SIV envelope proteins of mac251 and B670 isolates cross-neutralize. Finally, we show that deglycosylation of the SIV envelope results in a molecule which binds neither soluble CD4 nor the neutralizing monoclonal antibodies being investigated here and does not elicit sera with a significant neutralizing titer.  相似文献   

4.
The human antibody response has special significance in the ongoing efforts to develop a protective HIV vaccine. The observation that a subset of HIV infected individuals, who do not develop AIDS, have a broadly neutralizing antibody response has drawn attention to deciphering the nature of this response. It is hoped that an understanding of these protective antibodies, developed over time in response to the ongoing accumulation of mutations in the infecting virus, will facilitate the development of a vaccine that can elicit a similar response. This strategy will be greatly aided by the identification of broadly neutralizing monoclonal HIV antibodies from infected individuals. Several methods have been utilized to isolate and characterize individual antibodies from the human repertoire and each of these methods has been applied to the generation of broadly neutralizing HIV antibodies, albeit with differing rates of success. This review describes several of these methods including human hybridoma; EBV transformation; nonimmortalized B cell culture; clonal sorting; and combinatorial display. Key considerations used in the comparison of different methods includes: efficiency of interrogation of an individual’s entire repertoire; assay formats that can be used to screen for antibodies of interest (i.e., binding versus biological assays); and the ability to recover native antibody heavy and light chain pairs.Key words: HIV, antibody, neutralizing, B cell, repertoire  相似文献   

5.
Five hybridomas that secrete monoclonal antibodies which neutralize the infectivity of lactate dehydrogenase-elevating virus (LDV) were isolated from BALB/c mice primed with Formalin-inactivated LDV. Competition analyses indicated that all five neutralizing monoclonal antibodies recognize contiguous, if not identical, epitopes on the envelope glycoprotein of LDV (VP-3) which are not recognized by nonneutralizing VP-3-specific monoclonal antibodies isolated from the same fusion. Despite the presence of neutralizing activity, polyclonal anti-LDV antibodies obtained from persistently infected mice did not compete for binding to LDV with four of the five neutralizing monoclonal antibodies tested. The results indicate that the envelope glycoprotein of LDV possesses a major neutralizing epitope which is poorly recognized, if at all, by mice during a natural infection but is rendered immunogenic by Formalin inactivation of the virus. The epitope was also not immunogenic in a rabbit, since its polyclonal LDV-neutralizing antibodies did not inhibit binding of the mouse monoclonal antibodies to LDV. Passive immunization with the neutralizing monoclonal antibodies did not protect mice from LDV infection and did not alter the course of infection. Neutralizing monoclonal antibodies have been used to select a neutralization escape variant by a novel combination of in vitro and in vivo isolation.  相似文献   

6.
Botulinum neurotoxins (BoNTs) are causative agents for botulism and are identified as a category A bioterror agents by the Centers for Disease Control and Prevention (CDC). Current antitoxins against BoNTs intoxication have some limitations including side effects or limited supply. As an alternative, neutralizing monoclonal antibodies will play an increasing role as BoNTs therapeutics. To date, no human anti-BoNT/B neutralizing monoclonal antibodies have yet to be reported. Herein, we describe an improved selection approach and characterization of a human monoclonal antibody, F2, which is capable of binding BoNT/B with high specificity and displays neutralizing activity in an in vitro cell-based assay. Through surface plasmon resonance studies, we have determined its association and dissociation rate constants. In sum, our data demonstrate that monoclonal antibody F2 is a promising BoNT/B therapeutic lead for further development.  相似文献   

7.
The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is thought to induce potent neutralizing antibodies which are generally defined as type specific and reactive with individual viral isolates. In contrast, the CD4-binding domain is thought to induce neutralizing antibodies that are group specific and capable of neutralizing all isolates of HIV-1. However, in this study, we used a panel of human monoclonal antibodies to these regions of gp120 which displays specificities and neutralizing activities that challenge these tenets. In particular, we used a human monoclonal antibody to the V3 domain with exceptionally potent and broad neutralizing activity against many diverse HIV-1 isolates. The anti-CD4-binding domain antibodies, on the other hand, showed a more restricted pattern of activity.  相似文献   

8.
Antigenic domain 1 (AD-1) on glycoprotein gp58 of human cytomegalovirus was characterized in detail, using mouse and human monoclonal antibodies as well as human convalescent sera. Series of procaryotically expressed fusion proteins and synthetic peptides of various lengths were used as sources of antigen. Binding of antibodies was found to depend on a continuous sequence of more than 70 amino acids between residues 552 and 635 of gp58. The fine specificities for sequences involved in antibody binding were (i) amino acids 557 to 635 for neutralizing as well as nonneutralizing mouse monoclonal antibodies, (ii) amino acids 552 to 630 for a neutralizing human monoclonal antibody, and (iii) amino acids 557 to 630 for antibodies present in human sera. Experiments involving fragments of AD-1, presented either as procaryotically expressed fusion protein or as synthetic peptides, indicated that the intact structure was required for recognition of AD-1 by antibodies.  相似文献   

9.
A total of 56 stable murine hybridoma monoclones that produce homogeneous antibodies against human or calf terminal deoxynucleotidyltransferase have been established. All of the antibodies exhibited specific binding to various Mr forms of terminal transferase and eight possessed neutralizing activity. Results are presented that permitted characterization of ten of these antibodies with respect to their immunoglobulin class, their recognition of calf or human terminal-transferase Mr species by immunoblotting techniques and their recognition of distinct antigenic sites. Terminal transferase was purified in a single step by using an immunoaffinity column constructed with a monoclonal antibody exhibiting a high binding affinity for the enzyme. Single monoclonal antibodies were also used to bind selectively to terminal-transferase antigen in tissue slices and individual cells.  相似文献   

10.
To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols.  相似文献   

11.
Passive transfer studies using monoclonal or polyclonal antibodies in the macaque model have been valuable for determining conditions for antibody protection against immunodeficiency virus challenge. Most studies have employed hybrid simian/human immunodeficiency virus (SHIV) challenge in conjunction with neutralizing human monoclonal antibodies. Passive protection against SIV, particularly the pathogenic prototype virus SIVmac239, has been little studied because of the paucity of neutralizing antibodies to this virus. Here, we show that the antibody-like molecule CD4-IgG2 potently neutralizes SIVmac239 in vitro. When administered by an osmotic pump to maintain concentrations given the short half-life of CD4-IgG2 in macaques, the molecule provided sterilizing immunity/protection against high-dose mucosal viral challenge to a high proportion of animals (5/7 at a 200 mg dose CD4-IgG2 and 3/6 at a 20 mg dose) at serum concentrations below 1.5 μg/ml. The neutralizing titers of such sera were predicted to be very low and indeed sera at a 1∶4 dilution produced no neutralization in a pseudovirus assay. Macaque anti-human CD4 titers did develop weakly at later time points in some animals but were not associated with the level of protection against viral challenge. The results show that, although SIVmac239 is considered a highly pathogenic virus for which vaccine-induced T cell responses in particular have provided limited benefit against high dose challenge, the antibody-like CD4-IgG2 molecule at surprisingly low serum concentration affords sterilizing immunity/protection to a majority of animals.  相似文献   

12.
Chronic hepatitis C virus (HCV) infection can persist even in the presence of a broadly neutralizing antibody response. Various mechanisms that underpin viral persistence have been proposed, and one of the most recently proposed mechanisms is the presence of interfering antibodies that negate neutralizing responses. Specifically, it has been proposed that antibodies targeting broadly neutralizing epitopes located within a region of E2 encompassing residues 412 to 423 can be inhibited by nonneutralizing antibodies binding to a less conserved region encompassing residues 434 to 446. To investigate this phenomenon, we characterized the neutralizing and inhibitory effects of human-derived affinity-purified immunoglobulin fractions and murine monoclonal antibodies and show that antibodies to both regions neutralize HCV pseudoparticle (HCVpp) and cell culture-infectious virus (HCVcc) infection albeit with different breadths and potencies. Epitope mapping revealed the presence of overlapping but distinct epitopes in both regions, which may explain the observed differences in neutralizing phenotypes. Crucially, we failed to demonstrate any inhibition between these two groups of antibodies, suggesting that interference by nonneutralizing antibodies, at least for the region encompassing residues 434 to 446, does not provide a mechanism for HCV persistence in chronically infected individuals.  相似文献   

13.
Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics.  相似文献   

14.
Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Fourteen clonally isolated mutants demonstrated substantial resistance to multiple monoclonal antibodies, including K3-4C8-K3-2F2 and B5-B3. In addition, 13 mutants demonstrated a 10-fold or greater reduction in neutraliztion mediated by polyclonal human antibody. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.  相似文献   

15.
Recent advances in methods for the manufacture of inactivated poliovirus vaccines have resulted in increased vaccine immunogenicity. In conjunction with this capability it is important to have available highly sensitive and quantitative potency assays. The potential suitability of enzyme-linked immunoassay (ELISA) was evaluated using animal sera with neutralizing antibodies or neutralizing monoclonal antibodies for antigen detection in potency tests. The monoclonal antibodies developed, which bound D antigen but not C antigen, were neutralizing unless relatively weakly reactive. Those that bound C antigen only were non-neutralizing. Those that bound both C and D antigens were sometimes neutralizing. D-specific and D/C-specific neutralizing monoclonal antibodies against type-2 poliovirus protected mice on passive immunization against paralytic disease and death from the MEF strain virus. Potency measurements by ELISA using either D-specific neutralizing monoclonal antibodies or type-specific goat sera for antigen detection were sensitive and precise. Tests using C-specific monoclonal antibodies for antigen detection indicated that increased C antigen content may result in falsely elevated reactivities of animal sera with some vaccines. Monoclonal antibodies may be useful ELISA reagents for IPV potency testing.  相似文献   

16.
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing, dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection, increasing viral replication and the release of cytokines and vasoactive mediators, culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however, antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology, we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive, directed against either envelope or premembrane proteins, and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation, even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies, while lowering the risk of dengue shock syndrome.  相似文献   

17.
Change in tropism upon immune escape by human immunodeficiency virus.   总被引:10,自引:7,他引:3       下载免费PDF全文
The V3 loop of human immunodeficiency virus type 1 is both a determinant of viral cell tropism and a target for neutralizing antibodies. This relationship was investigated. Selection of a dual-tropic (T cells and macrophages) virus to replicate in CD4+ brain cells results in loss of macrophage tropism and of neutralization by an anti-V3 loop monoclonal antibody. Moreover, selection of the brain-selected variant to escape from V3 loop-specific neutralizing monoclonal antibodies results in the reduction or loss of brain cell tropism and the reacquisition of macrophage tropism. These data may indicate that the antigenic diversification of human immunodeficiency virus type 1 apparent after seroconversion can be selected either by immune responses or by colonization of new cell types.  相似文献   

18.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

19.
Neutralizing antibodies are commonly elicited by viral infection. Most antibodies that have been characterized block early stages of virus entry that occur before membrane penetration, whereas inhibition of late stages in entry that occurs after membrane penetration has been poorly characterized. Here we provide evidence that the neutralizing antihexon monoclonal antibody 9C12 inhibits adenovirus infection by blocking microtubule-dependent translocation of the virus to the microtubule-organizing center following endosome penetration. These studies identify a previously undescribed mechanism by which neutralizing antibodies block virus infection, a situation that may be relevant for other nonenveloped viruses that use microtubule-dependent transport during cell entry.  相似文献   

20.
S W Ludmerer  D Benincasa    G E Mark  rd 《Journal of virology》1996,70(7):4791-4794
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号