首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nucleotide sequence of a 4.5-kilobase copper resistance determinant from Pseudomonas syringae pv. tomato revealed four open reading frames (ORFs) in the same orientation. Deletion and site-specific mutational analyses indicated that the first two ORFs were essential for copper resistance; the last two ORFs were required for full resistance, but low-level resistance could be conferred in their absence. Five highly conserved, direct 24-base repeats were found near the beginning of the second ORF, and a similar, but less conserved, repeated region was found in the middle of the first ORF.  相似文献   

2.
The relationships among strains of Pseudomonas syringae pv. tomato, Ps. syr. antirrhini, Ps. syr. maculicola, Ps. syr. apii and a strain isolated from squash were examined by restriction fragment length polymorphism (RFLP) patterns, nutritional characteristics, host of origin and host ranges. All strains tested except for Ps. syr. maculicola 4326 isolated from radish ( Raphanus sativus L.) constitute a closely related group. No polymorphism was seen among strains probed with the 5.7 and 2.3 kb Eco RI fragments which lie adjacent to the hrp cluster of Ps. syr. tomato and the 8.6 kb Eco RI insert of pBG2, a plasmid carrying the β-glucosidase gene(s). All strains tested had overlapping host ranges. In contrast to this, comparison of strains by RFLP patterns of sequences homologous to the 4.5 kb Hind III fragment of pRut2 and nutritional properties distinguished four groups. Group 1, consisting of strains of pathovars maculicola, tomato and apii , had similar RFLP patterns and used homoserine but not sorbitol as carbon sources. Group 2, consisting of strains of pathovars maculicola and tomato , differed from Group 1 in RFLP patterns and did not use either homoserine or sorbitol. Group 3 was similar to Group 2 in RFLP patterns but utilized homoserine and sorbitol. This group included strains of the pathovars tomato and antirrhini , and a strain isolated from squash. Group 4, a single strain of Ps. syr. maculicola isolated from radish, had unique RFLP patterns and resembled Group 3 nutritionally. The evolutionary relationships of these strains are discussed.  相似文献   

3.
Avirulence gene D, cloned from Pseudomonas syringae pv. tomato, caused P. s. pv. glycinea to elicit a hypersensitive defense response on certain cultivars of soybean. Nucleotide sequence data for a 5.6-kb HindIII fragment containing avrD disclosed five long open-reading frames (ORFs) occurring in tandem. The phenotype conferred by avrD was expressed in P. s. pv. glycinea solely by the first of these ORFs (933 bases) that encoded a protein of 34,115 daltons. Neither a signal peptide sequence nor significant regions of hydrophobicity were present that would indicate secretion of the protein or its membrane association. Hybridization analyses revealed that some but not all P. syringae pathovars contained DNA homologous to avrD. This included weak hybridization to all tested races of P. s. pv. glycinea, although none of them express the phenotype conferred by avrD. The avrD gene occurred on an indigenous 75-kb plasmid in several P. s. pv. tomato isolates.  相似文献   

4.
Abstract

Fifty-six strains of Pseudomonas syringae pv. tomato (P.s. pv. tomato) were collected from tomato-producing areas in Tanzania and assessed for resistance to copper and antibiotics. The collection was done from three tomato-producing regions (Morogoro, Arusha and Iringa), representing three different ecological conditions in the country. After isolation and identification, the P. s. pv. tomato strains were grown on King's medium B (KB) amended with 20% copper sulphate (w/v). The strains were also assessed for resistance to antibiotics. Results indicated that there was widespread resistance of the P. s. pv. tomato strains to copper sulphate. The highest level of resistance was recorded from the Arusha region (Northern Tanzania), 83.3% of the P. s. pv. tomato strains from that region showed resistance to copper sulphate. This was followed by Iringa region (Southern Tanzania), from where strains of the pathogen were moderately resistant to copper sulphate, such that 54.0% of them were able to grow on the KB medium amended with 20% (w/v) of the copper compound.

Out of seven strains of P. s. pv. tomato from Morogoro region (Central Tanzania) included in the study, five (71.5%) were resistant to copper sulphate. The only strain of P. s. pv. tomato from the Dodoma region (Central Tanzania, but with a different ecological condition from the Morogoro region) included in the study was unable to grow on the medium containing 20% copper sulphate. None of the P. s. pv. tomato strains in the four regions included in the study were resistant to streptomycin sulphate. These results suggest that in the Arusha and Iringa regions of Tanzania, there might be possibilities of excessive use of copper compounds in tomato production, such that strains of P. s. pv. tomato strains in the areas have become resistant to the compounds.  相似文献   

5.
Chemotaxis by Pseudomonas syringae pv. tomato   总被引:1,自引:0,他引:1       下载免费PDF全文
Optimal laboratory conditions for studying chemotaxis by Pseudomonas syringae pv. tomato were determined by using the Adler capillary tube assay. Although they are not an absolute requirement for chemotaxis, the presence of 0.1 mM EDTA and 1 mM MgCl2 in the chemotaxis buffer (10 mM potassium phosphate [pH 7.2]) significantly enhanced the response to attractant. The addition of mannitol as an energy source had little effect. The optimal temperature for chemotaxis was 23°C, which is 5°C below the optimal growth temperature for this pathogen. The best response occurred when the bacteria were exposed to attractant for 60 min at a concentration of approximately 5 × 106 CFU/ml. P. syringae pv. tomato was strongly attracted to citric and malic acids, which are the predominant organic acids in tomato fruit. With the exception of asparagine, the major amino acids of tomatoes were weak to moderate attractants. Glucose and fructose, which account for approximately 47% of tomato dry matter, also elicited poor responses. In assays with tomato intercellular fluid and leaf surface water, the bacterial speck pathogen could not chemotactically distinguish between a resistant and a susceptible cultivar of tomato.  相似文献   

6.
Twenty strains of Pseudomonas syringae pv. tomato were examined for the presence of plasmid DNA. P. syringae pv. tomato plasmids were grouped into five size classes: class A ranged from 95 to 103 kilobases (kb); class B ranged from 71 to 83 kb; class C ranged from 59 to 67 kb; class D ranged from 37 to 39 kb; and class E was 29 kb. All strains contained at least two plasmids in classes A and B. The conjugative ability of P. syringae pv. tomato plasmids in three strains was demonstrated by mobilization of the nonconjugative plasmid RSF1010 into Pseudomonas syringae pv. syringae recipients. Plasmids from the three conjugative strains were labeled with Tn5. Four conjugative plasmids were identified by their repeated transfer to P. syringae pv. syringae recipients. P. syringae pv. tomato strains varied in sensitivity to copper sulfate (CuSO4): MICs were 0.4 to 0.6 mM for sensitive strains, 1.2 mM for moderately resistant strains, and 1.6 to 2.0 mM for very resistant strains. One very resistant strain, PT23, functioned as a donor of copper resistance. Recipient P. syringae pv. syringae strains PS51 and PS61 were inhibited by 0.1 mM CuSO4, whereas the CuSO4 MICs for transconjugant strains PS51(pPT23A) and PS61(pPT23C) were 1.8 and 2.6 mM, respectively. P. syringae pv. tomato strains PT12.2 and PT17.2 were inhibited by 0.6 mM copper sulfate, but their copper sulfate MICs were 2.6 and 1.8 mM, respectively, when they acquired pPT23C. Therefore, copper resistance in PT23 was controlled by two conjugative plasmids, designated pPT23A (101 kb) and pPT23C (67 kb).  相似文献   

7.
The chlorosis-inducing phytotoxin coronatine is produced by several Pseudomonas syringae pathovars, including glycinea, morsprunorum, atropurpurea, and the closely related tomato and maculicola. To date, all coronatine-producing pv. glycinea, morsprunorum, and atropurpurea strains that have been examined carry the gene cluster that controls toxin production on a large plasmid. In the present study the genomic location of the coronatine gene cluster was determined for coronatine-producing strains of the pv. tomato-maculicola group by subjecting their genomic DNA to pulsed-field electrophoresis and Southern blot analysis with a hybridization probe from the coronatine gene cluster. The cluster was chromosomally borne in 10 of the 22 strains screened. These 10 strains infected both crucifers and tomatoes but could not use sorbitol as a sole source of carbon. The remaining 12 coronatine-producing strains had plasmid-borne toxin gene clusters and used sorbitol as a carbon source. Only one of these strains was pathogenic on both crucifers and tomatoes; the remainder infected just tomatoes. Restriction fragment length polymorphism analysis of the pv. tomato-maculicola coronatine gene clusters was performed with probes from P. syringae pv. tomato DC3000, a tomato and crucifer pathogen. Although the coronatine cluster appeared, in general, to be highly conserved across the pv. tomato-maculicola group, there were significant differences between plasmid-borne and chromosomally borne genes. The extensively studied coronatine cluster of pv. glycinea 4180 closely resembled the plasmid-borne clusters of the pv. tomato-maculicola group.  相似文献   

8.
Two tomato cultivars, Ontario 7710 and Rehovot 13, and their F1, F2, F3 and backcross progenies were screened for resistance to bacterial speck (Pseudomonas syringae pv. tomato) of tomato. The results support the hypothesis that the resistance factors contained in the two parents are non-allelic and controlled by two different genes.  相似文献   

9.
Strains of Pseudomonas syringae pv. syringae resistant to copper, streptomycin, or both compounds were recovered from symptomless and diseased tissue of four woody hosts in three nurseries in Oklahoma. In strains resistant to copper and streptomycin (Cur Smr), resistance to both compounds was cotransferred with a single plasmid which was either 68, 190, or 220 kilobase pairs (kb). All Cus Smr strains contained a 68-kb conjugative plasmid. Cur Sms strains contained one plasmid which varied in size from 60 to 73 kb. All conjugative plasmids which transferred streptomycin resistance contained sequences homologous to the strA and strB Smr genes from the broad-host-range plasmid RSF1010. The Smr determinant was subsequently cloned from a 68-kb Cur Smr plasmid designated pPSR1. A restriction map detailing the organization of the homologous Smr genes from pPSR1 and RSF1010 and cloned Smr genes from P. syringae pv. papulans and Xanthomonas campestris pv. vesicatoria revealed the conservation of all sites studied. The Cur genes cloned from P. syringae pv. tomato PT23 and X. campestris pv. vesicatoria XV10 did not hybridize to the Cur plasmids identified in the present study, indicating that copper resistance in these P. syringae pv. syringae strains may be conferred by a distinct genetic determinant.  相似文献   

10.
Phytopathogenic bacteria possess a large number of genes that allow them to grow and cause disease on plants. Many of these genes should be induced when the bacteria come in contact with plant tissue. We used a modified in vivo expression technology (IVET) approach to identify genes from the plant pathogen Pseudomonas syringae pv. tomato that are induced upon infection of Arabidopsis thaliana and isolated over 500 in planta-expressed (ipx) promoter fusions. Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes. In addition, we identified metabolic genes presumably important for adaptation to growth in plant tissue, as well as several genes with unknown function that may encode novel virulence factors. Many ipx fusions, including several corresponding to novel genes, are dependent on HrpL, an alternative RNA polymerase sigma factor that regulates the expression of virulence genes. Expression analysis indicated that several ipx fusions are strongly induced upon inoculation into plant tissue. Disruption of one ipx gene, conserved effector locus (CEL) orf1, encoding a putative lytic murein transglycosylase, resulted in decreased virulence of P. syringae. Our results demonstrate that this screen can be used successfully to isolate genes that are induced in planta, including many novel genes potentially involved in pathogenesis.  相似文献   

11.
12.
Inheritance of resistance to bacterial speck of tomato was determined by analysing F1 F2 and backcross progenies of crosses involving a susceptible (VF-198) and a resistant cultivar (Rehovot-13). The results fit the hypothesis that resistance is controlled by a single dominant gene in interaction with minor genes. Cultivar susceptibility to Pseudomonas syringae pv. tomato was tested under greenhouse conditions under high inoculum pressure using infested tomato seeds together with infested soils and spray-inoculated wounded plants. Of 21 species, cultivars and lines, Rehovot-13, Ontario 7710 and Lycopersiconpimpinellifolium P.I. 126927 were found to be resistant to the pathogen. VF-198 and Tropic-VF were the most susceptible. Extra Marmande, Saladette, Acc.339944–3 and the wild type Lycopersicon esculentum var. cerasiforme were moderately resistant.  相似文献   

13.
Accessions of wild Lycopersicon germplasm were screened for resistance to Pseudomonas syringae pv tomato (P.s. tomato). Resistance to both race-0 and race-1 strains of P.s. tomato was identified in L. pimpinellifolium, L. peruvianum and L. hirsutum var. glabratum. Resistance to race-0 derived from L. hirsutum var. glabratum (Pto3) appeared to be inherited independently of Pto1 and Pto2. Filial and backcross generations derived from interspecific crosses between L. esculentum and L. hirsutum var. glabratum revealed that Pto3 resistance was inherited in a complex fashion and was incompletely dominant under conditions of high bacteria inocula. Resistance to P.s. tomato race-1 (Pto4) was also identified in L. hirsutum var. glabratum. Pto3 and Pto4 segregated independently of each other.  相似文献   

14.
One of the chromosomal regions of Pseudomonas syringae pv. syringae encoding pathogenicity factors had been mapped into a 3.9-kilobase-pair fragment in previous studies. Promoter probe analysis indicated the existence of a promoter near one end of the fragment. DNA sequencing of this fragment revealed the existence of a consensus promoter sequence in the region of the promoter activity and two open reading frames (ORFs) downstream. These ORFs, ORF1 and ORF2, encoded putative polypeptides of 40 and 83 kilodaltons, respectively. All ORF1::Tn5 as well as ORF2::Tn5 mutant strains were nonpathogenic on susceptible host bean plants and were unable to elicit hypersensitive reactions on nonhost tobacco plants. The deduced amino acid sequence of the 83-kilodalton polypeptide contained features characteristic of known integral membrane proteins. Fusion of the lacZ gene to ORF2 led to the expression of a hybrid protein inducible in Escherichia coli. The functions of the putative proteins encoded by ORF1 and ORF2 are unknown at present.  相似文献   

15.
The gene encoding alginate lyase (algL) in Pseudomonas syringae pv. syringae was cloned, sequenced, and overexpressed in Escherichia coli. Alginate lyase activity was optimal when the pH was 7.0 and when assays were conducted at 42 degrees C in the presence of 0.2 M NaCl. In substrate specificity studies, AlgL from P. syringae showed a preference for deacetylated polymannuronic acid. Sequence alignment with other alginate lyases revealed conserved regions within AlgL likely to be important for the structure and/or function of the enzyme. Site-directed mutagenesis of histidine and tryptophan residues at positions 204 and 207, respectively, indicated that these amino acids are critical for lyase activity.  相似文献   

16.
Induction of the copper resistance operon from Pseudomonas syringae.   总被引:11,自引:2,他引:9       下载免费PDF全文
Cupric sulfate induced mRNA specific to the copper resistance gene cluster previously cloned from Pseudomonas syringae pv. tomato PT23. mRNA from each of the four genes of this cluster responded in a similar manner to induction over time and with different concentrations of cupric sulfate. Promoter fusion constructs indicated the presence of a single copper-inducible promoter upstream from the first open reading frame.  相似文献   

17.
18.
Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole compounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each psU3S molecule consists of two domains interlinked by a two-stranded antiparallel β-sheet. The conformation of psU3S is different from its homologous proteins because of the flexibility of the linker between the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme. Our results provide the structural basis and biochemical evidence to further elucidate the catalytic mechanism of U3S.  相似文献   

19.
20.
Two genotypes of tomato A 100 and Ontario 7710 which were inoculated separately with four strains of Pseudomonas syringae pv. tomato differed significantly in disease severity (susceptibility) to bacterial speck. At both concentrations of inoculum of each strain used (107 and 108 cfu/ml) A 100 appeared to be highly susceptible whereas Ontario 7710 showed very low or no susceptibility. The significant differences in virulence between strains and in response of tomato plants in three replicate experiments were found. Generally, concentration of inoculum 107 cfu/ml was too low to induce consistent level of disease severity. The obtained results indicate the importance of consistent and favorable conditions for disease development in screening of tomato resistance to bacterial speck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号