首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The near-UV magnetic circular dichroism spectroscopy of the aromatic amino acid bands of hemoglobin was investigated as a potential probe of structural changes at the alpha(1)beta(2) interface during the allosteric transition. Allosteric effectors were used to direct carp and chemically modified human hemoglobins into the R (relaxed) or T (tense) state in order to determine the heme-ligation-independent spectral characteristics of the quaternary states. The tryptophan magnetic circular dichroism (MCD) peak observed at 293 nm in the R state of N-ethylsuccinimide- (NES-) des-Arg-modified human hemoglobin (Hb) was shifted to a slightly longer wavelength in the T state, consistent with the shift expected for tryptophan acting as a proton donor in a T-state hydrogen bond. Moreover, the increase observed in the T-state MCD intensity of this band relative to the R-state intensity was consistent with the effect expected for proton donation by tryptophan on the basis of the Michl perimeter model of aromatic MCD. The peak-to-trough magnitude of the R - T MCD difference spectrum is equal to 30% of the total R-state peak intensity contributed by all six tryptophans present in the human tetramer; the relative magnitude specific to the two beta37 tryptophans undergoing conformational change is estimated accordingly to be 3 times larger. The Trp-beta37 spectral shift, about 200 cm(-)(1), is in good agreement with the shifts observed in other H-bonded proton donors and provides corroborating spectral evidence for the formation in solution of a T-state Trp beta37-Asp alpha94 hydrogen bond observed in X-ray diffraction studies of deoxyHb crystals.  相似文献   

2.
The magnetic circular dichroism (MCD) spectra of the 4Fe clusters in the iron-sulphur proteins high-potential iron protein from Chromatium and the 8Fe ferredoxin from Clostridium pasteurianum have been measured over the wavelength range 300-800 nm at temperatures between approx. 1.5 and 50 K and at magnetic fields up to 5 tesla. In both cases the proteins have been studied in the oxidized and reduced states. The reduced state of high-potential iron protein gives a temperature-independent MCD spectrum up to 20 K, confirming the diamagetism of this state at low temperature. The MCD spectrum of samples of oxidized ferredoxin invariably show the presence of a low concentration of a paramagnetic species, in agreement with the observation that the EPR spectrum always shows a signal at g = 2.01. The paramagnetic MCD spectrum runs across the whole of the wavelength range studied and therefore most probably originates from an iron-sulphur centre. The diamagnetic component of the MCD spectrum of oxidized ferredoxin is very similar to that of reduced high-potential iron protein. The low-temperature MCD spectra of oxidized high-potential iron protein and reduced ferredoxin reveal intense, temperature-dependent bands. The spectra are highly structured with that of high-potential iron protein showing a large number of electronic transitions across the visible region. The MCD spectra of the two different oxidation levels are quite distinctive and should provide a means of establishing the identity of these state of 4Fe clusters in more complex proteins. MCD magnetisation curves have been constructed from detailed studies of the field and temperature dependence of the MCD spectra of the two paramagnetic oxidation states. These plots can be satisfactorily fitted to the theoretically computed curves for an S = 1/2 ground state with the g factors experimentally determined by EPR spectroscopy. The low-temperature MCD spectra of the reduced 2Fe-2S ferredoxin from Spirulina maxima are also presented and MCD magnetisation curves plotted and fitted to the experimentally determined g factors.  相似文献   

3.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation.  相似文献   

4.
The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q00- and QV-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q00-band to the A-term in the QV-band. The evidneces are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the "hemoglobin-like" MCD, while the alkaline ferroperoxidase is characterized by the "myoglobin-like" MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoporteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at approximately 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at approximately 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-iron charge-transfer electronic transition which may be assigned as b( pi) leads to 3d. This charge-transfer band is strongly overlapped with usual B(pi --pi*) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves.  相似文献   

5.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm.  相似文献   

6.
Absorption and magnetic circular dichroism spectra of rat liver Cd, Zn-metallothionein, and the cadmium complexes of propanethiolate and 1,2 propanedithiolate are reported. Observation of the same derivative-like MCD signal in the 250 nm region of each of these species provides experimental evidence for the assignment of the 250 nm shoulder in the Cd, Zn-metallothionein absorption spectrum as a sulfur to cadmium charge transfer band.  相似文献   

7.
The chlorite product of horseradish peroxidase, compound X, is shown by magnetic circular dichroism (MCD) spectroscopy in the temperature range 1.6-50 K to have a very similar haem structure to compound II under the same conditions (pH 10.7). Both are concluded to contain the Fe(IV) = 0 group. The MCD spectrum also detects an unusual species, absorbing at wavelengths between 600 and 750 nm, that has magnetic properties different from those of the ferryl haem group. It is suggested that this is a species at the same oxidation level as ferryl haem but with the porphyrin ring having suffered a one-electron oxidation, i.e. [Fe(III) P.+].  相似文献   

8.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin.  相似文献   

9.
The cadmium-binding properties of rabbit liver Zn7-metallothionein (MT) 2 and apo-MT, rat liver apo-alpha MT and Zn4-alpha MT, and calf liver apo-beta MT, have been studied using circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies. Both sets of spectra recorded during the titration of Zn7-MT 2 with Cd2+ exhibit a complicated pattern that is quite unexpected. Such behavior is not found at all in sets of spectra recorded during titrations of the apo-species (apo-MT, apo-alpha MT, and apo-beta MT), and is observed to a much lesser extent in the titration of Zn-alpha MT. Comparison between the band centers of the Cd-alpha MT and Cd-beta MT indicates that the CD spectrum of Cd7-MT is dominated by intensity from transitions that originate on Cd-S chromophores in the alpha domain, with little direct contribution from the beta domain. Analysis of the spectra recorded during titrations of Zn7-MT 2 with Cd2+ suggests: (i) that Cd2+ replaces Zn2+ in Zn7-MT isomorphously; (ii) that cadmium binds in a nonspecific, "distributed" manner across both domains; (iii) that cluster formation in the alpha domain only occurs after 4 mol eq of cadmium have been added and is indicated by the presence of a cluster-sensitive, CD spectral feature; (iv) that the characteristic derivative CD spectrum of native Cd4,Zn3-MT is only obtained from "synthetic" Cd4,Zn3-MT following a treatment cycle that allows the redistribution of cadmium into the alpha domain; warming the synthetic "native," Cd4,Zn3-MT, to 65 degrees C results in cadmium being preferentially bound in the alpha domain; and (v) Zn7-MT will bind Cd2+ quite normally at up to 65 degrees C but with greater specificity for the alpha domain compared with titrations carried out at 25 degrees C. These results suggest that the initial presence of zinc in both domains is an important factor in the lack of any domain specificity during cadmium binding to Zn-MT which contrasts the domain specific manner observed for cadmium binding to apo-MT.  相似文献   

10.
The magnetic circular dichroism (MCD) spectra of melatonin in water and methanol solutions is compared to the MCD spectra of indole and five melatonin conformations observed in low temperature jet spectroscopy. Based on a survey of indole compounds using Slater type orbitals-6G(d,p) and B3LYP/6-31G(d) energies, and CNDO/S-D calculations of MCD spectral bands, a dominant structure with a water molecule bridging the amide-keto oxygen and indole Nz-H atoms is proposed as the best fit for the MCD of aqueous melatonin. In methanol an additional band appears at 310 nm which is supported only by solvated structures in which the alkyl-amide arm is extended away from the indole moiety.  相似文献   

11.
Various complexes of myoglobin (Mb) with thiolate were studied by use of magnetic circular dichroism (MCD) spectroscopy. 1. MetMb-ethyl, n-propyl and isopropylmercaptan complexes offered MCD spectra similar to that of cytochrome P-450 (P-450) with respect to shape and intensity ratio of Soret MCD to Q0-0 MCD. The MCD spectra did not show any pH dependence. The complexes reduced by sodium dithionite exhibited the MCD spectrum of deoxyMb, indicative of release of thiolate anion from the heme iron. 2. Cysteine and cysteine methyl ester coordinated to the heme iron at pH 9.18 but not at pH 6.86 and 11.45. The complex formed at pH 9.18 gave an MCD spectrum similar to that of P-450, and an MCD spectrum of deoxy Mb on reduction with sodium dithionite. 3. The 2-mercaptoethanol complex exhibited three A terms associated with the Q0-0-1, and Soret transitions at pH 6.86 similar to those of Fe(II) cytochrome c, which indicates that Mb was reduced by this reagent at pH 6.86. At pH 9.18 2-mercaptoethanol gave an MCD spectrum similar to that of alkyl mercaptan just after the addition. With the time changed into deoxy Mb through some intermediate of reduced Mb-thiolate complex. At pH 11.45 2-mercaptoethanol formed complex which exhibited an MCD spectrum similar to those of other alkylmercaptans. 4. Sodium sulfide gave an MCD spectrum which resembled that of the normal thiol Mb complex just after addition at pH 6.86. The complex was gradually reduced to give 610 nm trough in addition to the MCD of deoxy Mb. The Mb-sulfur complex formed at pH 9.18 was gradually reduced to give an MCD spectrum which was fairly different from that of deoxy Mb. A similar MCD spectrum was observed at pH 11.45 just after the addition of Na2S. These results were considered to suggest the saturation of one of the conjugated double bonds of the porphyrin by sulfur.  相似文献   

12.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

13.
Bacillus subtilis cytochrome b-558 was expressed in high amounts in Escherichia coli, solubilized from membranes with detergent and purified free from other hemoproteins. The cytochrome possibly contains two heme groups. To determine the axial ligands to the low-spin heme and the heme rhombicity, the cytochrome was analyzed using low-temperature electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy. The combined results exclude bis-methionine, bis-lysine and histidine-methionine coordination. Bis-histidine coordination of the heme(s) with a near perpendicular orientation of the imidazole planes is strongly suggested by the highly axial low-spin EPR signals and the intense near infrared MCD spectrum (delta epsilon = 380 M-1.cm-1 at 4.2 K and 5 T) of the charge-transfer band at 1600 nm.  相似文献   

14.
Optical features of cytochrome c oxidase in potato mitochondria have been characterized in the near-ir region. In order to discriminate the respective properties of the various redox centers, the redox state was monitored from free and inhibited, bound species. Appropriate comparisons singled out difference spectra which can be attributed specifically to CuA and CuB. The CuA difference spectrum (red-ox) exhibits a negative band centered at 812 nm and, analogous to its mammalian counterpart, the so-called 830-nm band (delta epsilon red/ox = -2.0 mM-1 cm-1). The unusual difference spectrum (red-ox) assigned to CuB is characterized by a broad positive band also centered at 812 nm with an extinction coefficient of delta epsilon red/ox = 4.3 mM-1 cm-1.  相似文献   

15.
The magnetic circular dichroism (MCD) properties of numerous oxidation and ligation state derivatives of myoglobin and horseradish peroxidase reconstituted with an iron octa-alkylporphyrin (mesoheme IX) have been investigated in order to establish the utility of such porphyrins as models for protoporphyrin IX-containing systems. The MCD spectra of the mesoheme-reconstituted proteins are blue-shifted (4-12 nm) and are somewhat more intense (1.5-2.5 fold) when compared to the spectra of analogous derivatives of native myoglobin and horseradish peroxidase. However, the spectral band patterns of the mesoheme-reconstituted proteins closely resemble those of the native proteins in essentially all cases. These data demonstrate that octa-alkylporphyrins can be productively used as models for protoporphyrin IX in studies of heme proteins with MCD spectroscopy.  相似文献   

16.
The visible and near infrared magnetic circular dichroism (MCD) spectra of equilibrium high-spin ferrous derivatives of myoglobin, hemoglobin, horseradish peroxidase and mitochondrial cytochrome c oxidase at 15 K are compared with those of the corresponding proteins in nonequilibrium conformations produced by low-temperature photodissociation of CO-complexes of these proteins as well as of O2-complexes of myoglobin and hemoglobin. Over all the spectral region (450-800 nm) the intensities of MCD bands of hemoproteins studied in equilibrium conformation are shown to be strongly temperature-dependent, including a negative band at ca. 630 nm and positive bands at ca. 690 nm and at ca. 760 nm. In contrast to the absorption spectra, the low-temperature MCD spectra of high-spin ferrous hemoproteins differ significantly, reflecting the peculiarities in the heme iron coordination sphere which are created by a protein conformation. The MCD spectra reveal clearly the structural changes in the heme environment which occur on ligand binding. On the basis of assignment of d leads to d and charge-transfer transitions in the near infrared region the correlation is suggested between the wavelength position of the MCD band at approx. 690 nm and the value of iron out-of-plane displacement as well as between the location of the band at approx. 760 nm and the Fe-N epsilon (proximal histidine) bond strength (length) in equilibrium and nonequilibrium conformations of the hemoproteins studied. The high sensitivity of low-temperature MCD spectra to geometry at heme iron is discussed.  相似文献   

17.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of native rat liver and crab (Scylla serrata) Cd,Zn-metallothionein have been measured and the data are compared. The MCD data indicate that there are close similarities in the geometries of the cadmium-binding sites in both of these proteins; however, the CD spectra are quite different for the rat liver and crab proteins. The CD spectrum for the crab metallothionein is unlike any previously reported for a cadmium-containing metallothionein. This suggests that the CD spectrum is sensitive to the different bridging pattern used in the binding sites in the crab compared with the rat-liver metallothionein. Cadmium binding to the metal-free metallothionein is demonstrated for both proteins and it is shown that there are only minor structural differences between the native and remetallated proteins. The structural changes that occur near to the cadmium-binding sites during cadmium loading to the native proteins have been followed using absorption and CD spectroscopy. Marked changes are observed in the CD spectrum which can be associated with a two-phase reaction: initially Zn2+ is displaced by the Cd2+, then at higher concentrations of Cd2+ the tetrahedral geometry of the Cd2+-binding sites is lost as more Cd2+ is bound using the same thiolate groups. While this latter reaction results in considerable change to the CD spectrum, only minor changes are observed in the absorption spectrum. A significant red shift is observed in the S leads to Cd charge transfer transition region of the MCD spectrum (230-270 nm) following both cadmium loading of native rat liver, Cd,Zn-metallothionein and the metallation of metal-free metallothionein with cadmium. There are two contributions to this effect in Cd,Zn-metallothionein: (i) there is a S leads to Zn band underlying the S leads to Cd band; and (ii) the occupation of zinc sites by cadmium changes the energy of the S leads to Cd transition.  相似文献   

18.
Oxidized rubredoxin from Clostridium pasteurianum has been investigated by magnetic circular dichroism (MCD) spectroscopy over the temperature range 1.5 to 150 K and at magnetic fields between 0 and 4.5 tesla. The results show that studies of the temperature and field dependence of MCD transitions afford insight into the polarization of electronic transitions for ground states with large g-value anisotropy, in addition to estimates of ground-state g values and zero-field splitting parameters. In agreement with the assignment made by Eaton and Lovenberg (Eaton, W.A. and Lovenberg, W. (1973) in Iron-Sulfur Proteins, Vol. II (Lovenberg, W., ed.), pp. 131-162, Academic Press, New York), the ultraviolet-visible spectrum of oxidized rubredoxin is assigned to two S----Fe(III) charge transfer transitions (both 6A1----6T2 under tetrahedral symmetry), each spanning a range of 650-430 nm and 430-330 nm, respectively. The observed splitting in each of these transitions is attributed to a predominant axial distortion in the excited state resulting in effective D2d symmetry.  相似文献   

19.
The absorption, circular dichroism (CD), and magnetic circular dichroism (MCD) spectra in the visible region have been measured for Sepioteuthis lessoniana hemocyanin at 77, 198, and 293K. From the temperature dependence of the CD spectra of oxyhemocyanin, the bands observed at 450, 565, and 700 nm were resolved into those centered at 430, 490, 565, 600, and 700 nm. Since these five peaks are most probably due to the d-d transitions, the two copper ions at the oxygenated active center are inferred to be Cu(II) ions each in a non-equivalent coordination geometry of very low symmetry. The MCD spectral data confirm the view and reasonably explain the diamagnetism of oxyhemocyanin.  相似文献   

20.
The effect of pH on the near-UV absorption spectrum of cytochrome oxidase has been examined. Several lines of evidence implicate a proton binding site that can modulate the optical properties of cytochrome alpha 3 in the resting enzyme. Changing the pH within the range 6.5-10.5 was found to reversibly shift the position of the Soret band over an 11-nm range. The lower pH values caused a progressive blue shift in the Soret band, whereas the high-pH range promoted a gradual red shift. Limiting band positions were approximately 416 and 427 nm. The incubation time required to reach a stable band position varied somewhat as did the actual extent of the shift. In most cases, the shift was associated with an isosbestic point. A pH titration profile for the apparent equilibrium position of the Soret band was obtained. Nonlinear least-squares fitting to a scatter plot, assuming a single acid/base group, showed an apparent pKa of 7.8. Magnetic circular dichroism (MCD) spectra of the low-pH form at 416 nm, the high-pH form at 427 nm, and the cyanide derivative at 428 nm were compared. No evidence of a high-pH-dependent low-spin transition or a change in the redox state of cytochrome a3 was found, confirming earlier work [Baker, G. M., Noguchi, M., & Palmer, G. (1987) J. Biol. Chem. 262, 595-604]. Subtraction of ferricytochrome a [spectrum taken from Vanneste, W. H. (1966) Biochemistry 5, 838-848] from a series of blue-shifting spectra showed a band at 414 nm that progressively gained amplitude and a band at 430 nm that correspondingly lost amplitude. A series of red-shifting spectra showed the opposite behavior with a clear isosbestic point being evident in both cases. The difference extinction change at 414 and 430 nm depended linearly on the position of the Soret band, both showing a reversible dependence on pH. The 430-nm band is noted to be unusually red-shifted for high-spin ferric heme a. An additional, pH-insensitive band was observed at 408-410 nm which was eliminated by treatment with cyanide. The kinetics of the pH-induced blue shift and red shift were obtained at 416 nm by using dual-wavelength method and found to be biphasic, despite the occurrence of an isosbestic point.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号