首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the compositions of bacterioplankton communities in surface waters of coastal California using clone libraries of 16S rRNA genes and fluorescence in situ hybridization (FISH) in order to compare the community structures inferred from these two culture-independent approaches. The compositions of two clone libraries were quite similar to those of clone libraries of marine bacterioplankton examined by previous studies. Clones from gamma-proteobacteria comprised ca. 28% of the libraries, while approximately 55% of the clones came from alpha-proteobacteria, which dominated the clone libraries. The Cytophaga-Flavobacter group and three others each comprised 10% or fewer of the clone libraries. The community composition determined by FISH differed substantially from the composition implied by the clone libraries. The Cytophaga-Flavobacter group dominated 8 of the 11 communities assayed by FISH, including the two communities assayed using clone libraries. On average only 10% of DAPI (4', 6'-diamidino-2-phenylindole)-stained bacteria were detected by FISH with a probe for alpha-proteobacteria, but 30% of DAPI-stained bacteria appeared to be in the Cytophaga-Flavobacter group as determined by FISH. alpha-Proteobacteria were greatly overrepresented in clone libraries compared to their relative abundance determined by FISH, while the Cytophaga-Flavobacter group was underrepresented in clone libraries. Our data show that the Cytophaga-Flavobacter group can be a numerically dominant component of coastal marine bacterioplankton communities.  相似文献   

2.
Chitinases from uncultured marine microorganisms.   总被引:25,自引:0,他引:25  
Our understanding of the degradation of organic matter will benefit from a greater appreciation for the genes encoding enzymes involved in the hydrolysis of biopolymers such as chitin, one of the most abundant polymers in nature. To isolate representative and abundant chitinase genes from uncultivated marine bacteria, we constructed libraries of genomic DNA isolated from coastal and estuarine waters. The libraries were screened for genes encoding proteins that hydrolyze a fluorogenic analogue of chitin, 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside (MUF-diNAG). The abundance of clones capable of MUF-diNAG hydrolysis was higher in the library constructed with DNA from the estuary than in that constructed with DNA from coastal waters, although the abundance of positive clones was also dependent on the method used to screen the library. Plaque assays revealed nine MUF-diNAG-positive clones of 75,000 screened for the estuarine sample and two clones of 750,000 for the coastal sample. A microtiter plate assay revealed approximately 1 positive clone for every 500 clones screened in the coastal library. The number of clones detected with the plaque assay was consistent with estimates of the portion of culturable bacteria that degrade chitin. Our results suggest that culture-dependent methods do not greatly underestimate the portion of marine bacterial communities capable of chitin degradation.  相似文献   

3.
The bacterial diversity of a soil sample collected in the vicinity of Lake Zub, Schirmacher Oasis, Antarctica, was determined both by establishing pure colonies of culturable bacteria and by cloning the total 16S rDNA of the soil and establishing the phylogeny of the clones. Analysis of the 16S rRNA gene clones indicated that the bacteria belonged to the classes alpha-proteobacteria, beta-proteobacteria, gamma-proteobacteria, Gemmatimonas, Bacteriodetes, Actinobacteria, Chloroflexi and Chlamydiae. In addition, seven clones were categorized as unidentified and unculturable in the classes of beta-Proteobacteria, Actinobacteria, Chloroflexi and Chlamydiae. Further, the culturable bacteria from the same site were identified as belonging to the genera Pseudomonas, Sphingobacterium, Arthrobacter, Micrococcus, Brevondimonas, Rhodococcus and Microbacterium. These results identify for the first time the presence of bacteria belonging to the genera Brevundimonas, Microbacterium, Rhodococcus, Serratia, Enterobacter, Rhodopseudomonas, Sphingomonas, Acidovorax, Burkholderia, Nevskia, Gemmatimonas, Xanthomonas and Flexibacter in Antarctica. Further, comparison of the Antarctic soil bacterial diversity with other cold habitats of Antarctica like from sediments, ice and cyanobacterial mat samples indicated that the bacterial diversity in soil was similar to the diversity observed in the continental shelf sediment sample. The Antarctic soil clones also resembled the bacterial diversity of soils from other geographical regions, but were unique in that none of the clones from the soil belonged to the uncultured Y, O, G, A and B groups common to all soil samples.  相似文献   

4.
5.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a approximately 900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

6.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a ~900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

7.
The ability of marine bacteria to adhere to detrital particulate organic matter and rapidly switch on metabolic genes in an effort to reproduce is an important response for bacterial survival in the pelagic marine environment. The goal of this investigation was to evaluate the relationship between chitinolytic gene expression and extracellular chitinase activity in individual cells of the marine bacterium Pseudoalteromonas sp. strain S91 attached to solid chitin. A green fluorescent protein reporter gene under the control of the chiA promoter was used to evaluate chiA gene expression, and a precipitating enzyme-linked fluorescent probe, ELF-97-N-acetyl-beta-D-glucosaminide, was used to evaluate extracellular chitinase activity among cells in the bacterial population. Evaluation of chiA expression and ELF-97 crystal location at the single-cell level revealed two physiologically distinct subpopulations of S91 on the chitin surface: one that was chitinase active and remained associated with the surface and another that was non-chitinase active and released daughter cells into the bulk aqueous phase. It is hypothesized that the surface-associated, non-chitinase-active population is utilizing chitin degradation products that were released by the adjacent chitinase-active population for cell replication and dissemination into the bulk aqueous phase.  相似文献   

8.
南美白对虾肠道微生物群落的分子分析   总被引:12,自引:0,他引:12  
采用分子生物学手段16S rDNA克隆文库方法对实验室养殖条件下的南美白对虾肠道细菌进行了多样性研究。用限制性片段长度多态性(RFLP)方法从文库中筛选出可能不同细菌来源的克隆子12个,测定其16S rDNA片段核甘酸序列,将所获得的序列与GenBank数据库进行BLAST比对,结果表明:南美白对虾肠道的16S rDNA克隆文库中126个克隆子分属2个不同的细菌类群:变形细菌(Proteobacteria)和厚壁细菌(Firmicutes),其中厚壁细菌为优势菌群占到75.4%,且与最相似序列同源性均低于94%;变形细菌占到24.6%,与最相似序列同源性均高于98%,分别为希瓦氏菌属(Shewanella),泛菌属(Pantoea),Aranicola属,假单胞菌属(Pseudomonas)和弧菌属(Vibrio)。  相似文献   

9.
Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups.  相似文献   

10.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

11.
Photosynthesis genes and operons of aerobic anoxygenic photosynthetic (AAP) bacteria have been examined in a variety of marine habitats, but genomic information about freshwater AAP bacteria is lacking. The goal of this study was to examine photosynthesis genes of AAP bacteria in the Delaware River. In a fosmid library, we found two clones bearing photosynthesis gene clusters with unique gene content and organization. Both clones contained 37 open reading frames, with most of those genes encoding known AAP bacterial proteins. The genes in one fosmid were most closely related to those of AAP bacteria in the Rhodobacter genus. The genes of the other clone were related to those of freshwater beta-proteobacteria. Both clones contained the acsF gene, which is required for aerobic bacteriochlorophyll synthesis, suggesting that these bacteria are not anaerobes. The beta-proteobacterial fosmid has the puf operon B-A-L-M-C and is the first example of an uncultured bacterium with this operon structure. The alpha-3-proteobacterial fosmid has a rare gene order (Q-B-A-L-M-X), previously observed only in the Rhodobacter genus. Phylogenetic analyses of photosynthesis genes revealed a possible freshwater cluster of AAP beta-proteobacteria. The data from both Delaware River clones suggest there are groups of freshwater or estuarine AAP bacteria distinct from those found in marine environments.  相似文献   

12.
We tested new strategies for the isolation of abundant bacteria from coastal North Sea surface waters, which included reducing by several orders of magnitude the concentrations of inorganic N and P compounds in a synthetic seawater medium. Agar plates were resampled over 37 days, and slowly growing colonies were allowed to develop by repeatedly removing all newly formed colonies. A fivefold increase of colonies was observed on plates with reduced nutrient levels, and the phylogenetic composition of the culture collection changed over time, towards members of the Roseobacter lineage and other alpha-proteobacteria. Novel gamma-proteobacteria from a previously uncultured but cosmopolitan lineage (NOR5) formed colonies only after 12 days of plate incubation. A time series of German Bight surface waters (January to December 1998) was screened by fluorescence in situ hybridization (FISH) with isolate-specific and general probes. During spring and early summer, a prominent fraction of FISH-detectable bacteria (mean, 51%) were affiliated with the Cytophaga-Flavobacterium group (CF) of the Bacteroidetes. One Cytophaga sp. lineage with cultured representatives formed almost 20% of the CF group. Members of the Roseobacter cluster constituted approximately 50% of alpha-proteobacteria, but none of the Roseobacter-related isolates formed populations of >1% in the environment. Thus, the readily culturable members of this clade are probably not representative of Roseobacter species that are common in the water column. In contrast, members of NOR5 were found at high abundances (>10(5) cells ml(-1)) in the summer plankton. Some abundant pelagic bacteria are apparently able to form colonies on solid media, but appropriate isolation techniques for different species need to be developed.  相似文献   

13.
14.
昆明盐矿古老岩盐沉积中的原核生物多样性   总被引:1,自引:0,他引:1  
应用PCR-DGGE和rRNA分析法研究了昆明盐矿古老岩盐沉积中的原核生物多样性。样品的细菌DGGE分析得到27条带,古菌得到18条带。样品与纯培养得到的19个属菌株的DGGE图谱对比分析发现,细菌18个属菌株,只有1个属菌株与样品中的1条带迁移位置都不一致;古菌1个属的菌株不与样品中任何条带迁移位置一致。表明纯培养所得菌株并非该环境中的优势类群。同时,建立了样品细菌和古菌的16S rDNA克隆文库,从中分别挑取36个细菌克隆和20个古菌克隆进行ARDRA分析。细菌可分为10个OTUs,其中3个OTUs是优势类群,分别占38.9%,25.0%,16.7%,其余7个OTUs各含有1个克隆。古菌分为8个OTUs,没有明显的优势类群。每个OTU的代表克隆16S rDNA序列分析表明,细菌分属3大类群:α-Proteobacteria,γ-Proteobacteria和Actinobacteria,以Pseudomonas属菌为优势,含有其它岩盐沉积中没有发现的Actinobacteria。古菌主要是Halorubrum属、Haloterrigena属菌和未培养古菌。本研究表明,昆明盐矿古老岩盐沉积具有较丰富的原核生物多样性,含有大量未知的、未培养或不可培养的原核生物,但在原核生物物种组成和丰度上,免培养与此前的纯培养研究结果存在一定差异。因此,结合使用两类方法才能较全面地认识高盐极端环境微生物的多样性。  相似文献   

15.
Sponge-associated bacteria are thought to produce many novel bioactive compounds, including polyketides. PCR amplification of ketosynthase domains of type I modular polyketide synthases (PKS) from the microbial community of the marine sponge Discodermia dissoluta revealed great diversity and a novel group of sponge-specific PKS ketosynthase domains. Metagenomic libraries totaling more than four gigabases of bacterial genomes associated with this sponge were screened for type I modular PKS gene clusters. More than 90% of the clones in total sponge DNA libraries represented bacterial DNA inserts, and 0.7% harbored PKS genes. The majority of the PKS hybridizing clones carried small PKS clusters of one to three modules, although some clones encoded large multimodular PKSs (more than five modules). The most abundant large modular PKS appeared to be encoded by a bacterial symbiont that made up < 1% of the sponge community. Sequencing of this PKS revealed 14 modules that, if expressed and active, is predicted to produce a multimethyl-branched fatty acid reminiscent of mycobacterial lipid components. Metagenomic libraries made from fractions enriched for unicellular or filamentous bacteria differed significantly, with the latter containing numerous nonribosomal peptide synthetase (NRPS) and mixed NRPS-PKS gene clusters. The filamentous bacterial community of D. dissoluta consists mainly of Entotheonella spp., an unculturable sponge-specific taxon previously implicated in the biosynthesis of bioactive peptides.  相似文献   

16.
A comprehensive assessment of bacterial diversity and community composition in arctic and antarctic pack ice was conducted through cultivation and cultivation-independent molecular techniques. We sequenced 16S rRNA genes from 115 and 87 pure cultures of bacteria isolated from arctic and antarctic pack ice, respectively. Most of the 33 arctic phylotypes were >97% identical to previously described antarctic species or to our own antarctic isolates. At both poles, the alpha- and gamma-proteobacteria and the Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups identified by cultivation as well as by molecular methods. The analysis of 16S rRNA gene clone libraries from multiple arctic and antarctic pack ice samples revealed a high incidence of closely overlapping 16S rRNA gene clone and isolate sequences. Simultaneous analysis of environmental samples with fluorescence in situ hybridization (FISH) showed that approximately 95% of 4',6'-diamidino-2-phenylindole (DAPI)-stained cells hybridized with the general bacterial probe EUB338. More than 90% of those were further assignable. Approximately 50 and 36% were identified as gamma-proteobacteria in arctic and antarctic samples,respectively. Approximately 25% were identified as alpha-proteobacteria, and 25% were identified as belonging to the Cytophaga-Flavobacterium group. For the quantification of specific members of the sea ice community, new oligonucleotide probes were developed which target the genera Octadecabacter, Glaciecola, Psychrobacter, Marinobacter, Shewanella, and Polaribacter: High FISH detection rates of these groups as well as high viable counts corroborated the overlap of clone and isolate sequences. A terrestrial influence on the arctic pack ice community was suggested by the presence of limnic phylotypes.  相似文献   

17.
The Clarion-Clipperton Fracture Zone (CCFZ) is located in the northeastern equatorial Pacific and contains abundant polymetallic nodules. To investigate its bacterial diversity, four libraries of 16S rRNA genes were constructed from sediments of four stations in different areas of the CCFZ. In total, 313 clones sequenced from the 4 libraries were assigned into 14 phylogenetic groups and 1 group of 28 unclassified bacteria. High bacterial diversity was predicted by the rarefaction analysis. The most dominant group overall was Proteobacteria, but there was variation in each library: Gammaproteobacteria was the most dominant group in two libraries, E2005-01 and ES0502, while Alphaproteobacteria and Deltaproteobacteria were the most dominant groups in libraries EP2005-03 and WS0505, respectively. Seven groups, including Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, were common to all four libraries. The remaining minor groups were distributed in libraries with different patterns. Most clones sequenced in this study were clustered with uncultured bacteria obtained from the environment, such as the ocean crust and marine sediment, but only distantly related to isolates. Bacteria involved in the cycling of metals, sulfur and nitrogen were detected, and their relationship with their habitat was discussed. This study sheds light on the bacterial communities associated with polymetallic nodules in the CCFZ and provides primary data on the bacterial diversity of this area.  相似文献   

18.
Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.  相似文献   

19.
Sequence analysis of environmental DNA promises to provide new insights into the ecology and biogeochemistry of uncultured marine microbes. In this study we used the Sargasso Sea Whole Genome Sequence (WGS) data set to search for hydrolases used by Cytophaga-like bacteria to degrade biopolymers such as polysaccharides and proteins. Analysis of the Sargasso WGS data for contigs bearing both the 16S rRNA genes of Cytophaga-like bacteria and hydrolase genes revealed a cellulase gene (celM) most similar to the gene found in Cytophaga hutchinsonii. A BLAST search of the entire Sargasso Sea WGS data set indicated that celM was the most abundant cellulase-like gene in the Sargasso Sea. However, the similarity between CelM-like cellulases and peptidases belonging to metalloprotease family M42 led us to question whether CelM is involved in the degradation of polysaccharides or proteins. PCR primers were designed for the celM genes in the Sargasso Sea WGS data set and used to identify celM in a fosmid library constructed with prokaryotic DNA from the western Arctic Ocean. Expression analysis of the Cytophaga-like Arctic CelM, which is 63% identical and 77% similar to CelM in C. hutchinsonii, indicated that there was peptidase activity, whereas cellulase activity was not detected. Our analysis suggests that the celM gene plays a role in the degradation of protein by Cytophaga-like bacteria. The abundance of peptidase genes in the Cytophaga-like fosmid clone provides further evidence for the importance of Cytophaga-like bacteria in the degradation of protein in high-molecular-weight dissolved organic matter.  相似文献   

20.
Sets of PCR primers were designed to amplify bacterial chitinases at different levels of specificity. The bacterial chitinase group primers were successful in targeting enzymes classified within the group A glycosyl hydrolases of family 18. The widespread occurrence of group A bacterial chitinases in actinomycetes was demonstrated. Streptomycete chitinase specific primers were designed and a collection of type strains of species changed in the genes Streptomyces were screened and shown to have at least one and usually multiple chitinase genes. The presence of the gene for the chitin binding protein was also demonstrated within the streptomycete type strains. These data indicate that streptomycetes are well equipped to degrade chitin. The detection of group A chitinases in total community DNA is described and a sandy soil shown to contain more than 10 different genes using DGGE to indicate genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号