首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported several lines of evidence that support a role for cellular DNA repair systems in completion of the retroviral DNA integration process. Failure to repair an intermediate in the process of integrating viral DNA into host DNA appears to trigger growth arrest or death of a large percentage of infected cells. Cellular proteins involved in the nonhomologous end joining (NHEJ) pathway (DNA-PK(CS)) and the damage-signaling kinases (ATM and ATR) have been implicated in this process. However, some studies have suggested that NHEJ proteins may not be required for the completion of lentiviral DNA integration. Here we provide additional evidence that NHEJ proteins are required for stable transduction by human immunodeficiency type 1 (HIV-1)-based vectors. Our analyses with two different reporters show that the number of stably transduced DNA-PK(CS)-deficient scid fibroblasts was reduced by 80 to 90% compared to the number of control cells. Furthermore, transduction efficiency can be restored to wild-type levels in scid cells that are complemented with a functional DNA-PK(CS) gene. The efficiency of stable transduction by an HIV-1-based vector is also reduced upon infection of Xrcc4 and ligase IV-deficient cells, implying a role for these components of the NHEJ repair pathway. Finally, we show that cells deficient in ligase IV are killed by infection with an integrase-competent but not an integrase-deficient HIV-1 vector. Results presented in this study lend further support to a general role for the NHEJ DNA repair pathway in completion of the retroviral DNA integration process.  相似文献   

2.
This study examined the efficiency of human immunodeficiency virus type 1 (HIV-1) integration in poly(ADP-ribose)polymerase-1 (PARP-1)-deficient murine cells and in human cell lines transfected with small interfering RNA against PARP-1 (PARP-1 siRNA). To semi-quantify the amount of integrated HIV-1 genome, real-time nested PCR was carried out using primers specific for Alu and alphoid DNA combined with primers for the HIV-1 genome. The results showed that the integration efficiency of the HIV-1 genome near Alu DNA, which is randomly distributed in the chromosome, is reduced in PARP-1-deficient murine cells, but not in PARP-1 siRNA-transfected human cells. By contrast, the integration efficiency of the HIV-1 genome near alphoid DNA, which is localized in the centromere region, is significantly reduced in PARP-1-deficient murine cells and in PARP-1 siRNA-transfected human cells. These results suggest that PARP-1 is required for HIV-1 integration near the centromere region both in human and murine cells.  相似文献   

3.
Poly (ADP-ribose) polymerase (PARP-1), ATM and DNA-dependent protein kinase (DNA-PK) are all involved in responding to DNA damage to activate pathways responsible for cellular survival. Here, we demonstrate that PARP-1−/− cells are sensitive to the ATM inhibitor KU55933 and conversely that AT cells are sensitive to the PARP inhibitor 4-amino-1,8-napthalamide. In addition, PARP-1−/− cells are shown to be sensitive to the DNA-PK inhibitor NU7026 and DNA-PKcs or Ku80 defective cells shown to be sensitive to PARP inhibitors. We believe PARP inhibition results in an increase in unresolved spontaneous DNA single-strand breaks (SSBs), which collapse replication forks and trigger homologous recombination repair (HRR). We show that ATM is activated following inhibition of PARP. Furthermore, PARP inhibitor-induced HRR is abolished in ATM, but not DNA-PK, inhibited cells. ATM and DNA-PK inhibition together give the same sensitivity to PARP inhibitors as ATM alone, indicating that ATM functions in the same pathways as DNA-PK for survival at collapsed forks, likely in non-homologous end joining (NHEJ). Altogether, we suggest that ATM is activated by PARP inhibitor-induced collapsed replication forks and may function upstream of HRR in the repair of certain types of double-strand breaks (DSBs).  相似文献   

4.
Cellular responses to DNA damage are crucial for maintaining genome integrity, virus infection, and preventing the development of cancer. Hepatitis C virus (HCV) infection and the expression of the HCV nonstructural protein NS3 and core protein have been proposed as factors involved in the induction of double-stranded DNA breaks and enhancement of the mutation frequency of cellular genes. Since DNA damage sensors, such as the ataxia-telangiectasia mutated kinase (ATM), ATM- and Rad3-related kinase (ATR), poly(ADP-ribose) polymerase 1 (PARP-1), and checkpoint kinase 2 (Chk2), play central roles in the response to genotoxic stress, we hypothesized that these sensors might affect HCV replication. To test this hypothesis, we examined the level of HCV RNA in HuH-7-derived cells stably expressing short hairpin RNA targeted to ATM, ATR, PARP-1, or Chk2. Consequently, we found that replication of both genome-length HCV RNA (HCV-O, genotype 1b) and the subgenomic replicon RNA were notably suppressed in ATM- or Chk2-knockdown cells. In addition, the RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were suppressed in these knockdown cells after inoculation of the cell culture-generated HCV. Consistent with these observations, ATM kinase inhibitor could suppress the HCV RNA replication. Furthermore, we observed that HCV NS3-NS4A interacted with ATM and that HCV NS5B interacted with both ATM and Chk2. Taken together, these results suggest that the ATM signaling pathway is critical for HCV RNA replication and may represent a novel target for the clinical treatment of patients with chronic hepatitis C.  相似文献   

5.
DNA and histone synthesis are coupled and ongoing replication is required to maintain histone gene expression. Here, we expose S phase–arrested cells to the kinase inhibitors caffeine and LY294002. This uncouples DNA replication from histone messenger RNA (mRNA) abundance, altering the efficiency of replication stress–induced histone mRNA down-regulation. Interference with caffeine-sensitive checkpoint kinases ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) does not affect histone mRNA down- regulation, which indicates that ATR/ATM alone cannot account for such coupling. LY294002 potentiates caffeine's ability to uncouple histone mRNA stabilization from replication only in cells containing functional DNA-activated protein kinase (DNA-PK), which indicates that DNA-PK is the target of LY294002. DNA-PK is activated during replication stress and DNA-PK signaling is enhanced when ATR/ATM signaling is abrogated. Histone mRNA decay does not require Chk1/Chk2. Replication stress induces phosphorylation of UPF1 but not hairpin-binding protein/stem-loop binding protein at S/TQ sites, which are preferred substrate recognition motifs of phosphatidylinositol 3-kinase–like kinases, which indicates that histone mRNA stability may be directly controlled by ATR/ATM- and DNA-PK–mediated phosphorylation of UPF1.  相似文献   

6.
7.
Cells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear, since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chk1-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication.  相似文献   

8.
Retroviral infection induces integrase-dependent apoptosis in DNA-PK-deficient murine scid lymphocytes. Furthermore, the efficiency of stable transduction of reporter genes is reduced in adherent cell lines that are deficient in cellular DNA-repair proteins known to mediate nonhomologous end joining (NHEJ), such as DNA-PK and XRCC4 (R. Daniel, R. A. Katz, and A. M. Skalka, Science 284:644-647, 1999). Here we report that wortmannin, an irreversible inhibitor of phosphatidylinositol 3-kinase (PI-3K)-related PKs, including the catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) and ATM, sensitizes normal murine lymphocytes to retrovirus-mediated cell killing. We also show that the efficiency of stable transduction of reporter genes in human (HeLa) cells, mediated by either an avian sarcoma virus or a human immune deficiency virus type 1 vector, is reduced in the presence of wortmannin. The dose dependence of such reduction correlates with that for inhibition of PI-3K-related protein kinase activity in these cells. Results from wortmannin treatment of a panel of cell lines confirms that formation and/or survival of transductants is dependent on components of the NHEJ pathway. However, stable transduction is virtually abolished by wortmannin treatment of cells that lack ATM. These results suggest that ATM activity is required for the residual transduction observed in the NHEJ-deficient cells. Our studies support the hypothesis that DNA repair proteins of the NHEJ pathway and, in their absence, ATM are required to avoid integrase-mediated killing [corrected] and allow stable retroviral DNA transduction. The studies also suggest that cells can be sensitized to such killing and stable retroviral DNA integration blocked by drugs that inhibit cellular DNA repair pathways.  相似文献   

9.
10.
RNA synthesis and DNA replication cease after DNA damage. We studied RNA synthesis using an in situ run-on assay and found ribosomal RNA (rRNA) synthesis was inhibited 24 h after UV light, gamma radiation or DNA cross-linking by cisplatin in human cells. Cisplatin led to accumulation of cells in S phase. Inhibition of the DNA repair proteins DNA-dependent protein kinase (DNA-PK) or poly(ADP-ribose) polymerase 1 (PARP-1) prevented the DNA damage-induced block of rRNA synthesis. However, DNA-PK and PARP-1 inhibition did not prevent the cisplatin-induced arrest of cell cycle in S phase, nor did it induce de novo BrdU incorporation. Loss of DNA-PK function prevented activation of PARP-1 and its recruitment to chromatin in damaged cells, suggesting regulation of PARP-1 by DNA-PK within a pathway of DNA repair. From these results, we propose a sequential activation of DNA-PK and PARP-1 in cells arrested in S phase by DNA damage causes the interruption of rRNA synthesis after DNA damage.  相似文献   

11.
The DNA damage response kinases ataxia telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK), and ataxia telangiectasia-mutated and Rad3-related (ATR) signal through multiple pathways to promote genome maintenance. These related kinases share similar methods of regulation, including recruitment to specific nucleic acid structures and association with protein activators. ATM and DNA-PK also are regulated via phosphorylation, which provides a convenient biomarker for their activity. Whether phosphorylation regulates ATR is unknown. Here we identify ATR Thr-1989 as a DNA damage-regulated phosphorylation site. Selective inhibition of ATR prevents Thr-1989 phosphorylation, and phosphorylation requires ATR activation. Cells engineered to express only a non-phosphorylatable T1989A mutant exhibit a modest ATR functional defect. Our results suggest that, like ATM and DNA-PK, phosphorylation regulates ATR, and phospho-peptide specific antibodies to Thr-1989 provide a proximal marker of ATR activation.  相似文献   

12.
The viability of non-homologous end-joining (NHEJ)-defective mice suggests that homologous recombination (HR) might take over its role in DNA repair. To test this hypothesis, we examined gene targeting frequencies (TF) in DNA-PK(cs), Ku80 and poly(ADP-ribose) polymerase (PARP-1) nullizygous cells. We observed a 3-fold TF increase in PARP-1 knockout embryonic stem (ES) cells, which is consistent with the predicted role of PARP-1 as a switch between HR and NHEJ. To a lesser extent, such effect could be reproduced upon chemical inhibition of PARP-1. However, TF was not enhanced in Ku80- or DNA-PK(cs)-defective cells. Our study also suggests an unexpected involvement of DNA-PK(cs) in HR.  相似文献   

13.
How DNA is repaired after retrovirus integration is not well understood. DNA-dependent protein kinase (DNA-PK) is known to play a central role in the repair of double-stranded DNA breaks. Recently, a role for DNA-PK in retroviral DNA integration has been proposed (R. Daniel, R. A. Katz, and A. M. Skalka, Science 284:644-647, 1999). Reduced transduction efficiency and increased cell death by apoptosis were observed upon retrovirus infection of cultured scid cells. We have used a human immunodeficiency virus (HIV) type 1 (HIV-1)-derived lentivirus vector system to further investigate the role of DNA-PK during integration. We measured lentivirus transduction of scid mouse embryonic fibroblasts (MEF) and xrs-5 or xrs-6 cells. These cells are deficient in the catalytic subunit of DNA-PK and in Ku, the DNA-binding subunit of DNA-PK, respectively. At low vector titers, efficient and stable lentivirus transduction was obtained, excluding an essential role for DNA-PK in lentivirus integration. Likewise, the efficiency of transduction of HIV-derived vectors in scid mouse brain was as efficient as that in control mice, without evidence of apoptosis. We observed increased cell death in scid MEF and xrs-5 or xrs-6 cells, but only after transduction with high vector titers (multiplicity of infection [MOI], >1 transducing unit [TU]/cell) and subsequent passage of the transduced cells. At an MOI of <1 TU/cell, however, transduction efficiency was even higher in DNA-PK-deficient cells than in control cells. Taken together, the data suggest a protective role of DNA-PK against cellular toxicity induced by high levels of retrovirus integrase or integration. Another candidate cellular enzyme that has been claimed to play an important role during retrovirus integration is poly(ADP-ribose) polymerase (PARP). However, no inhibition of lentivirus vector-mediated transduction or HIV-1 replication by 3-methoxybenzamide, a known PARP inhibitor, was observed. In conclusion, DNA-PK and PARP are not essential for lentivirus integration.  相似文献   

14.
DNA-PK and ATM are required for radiation-enhanced integration   总被引:2,自引:0,他引:2  
Ionizing radiation is known to improve transfection of exogenous DNA, a process we have termed radiation-enhanced integration. Previous observations have demonstrated that Ku proteins are critical for radiation-enhanced integration. Since Ku proteins form the DNA-binding domain of DNA-PK and since DNA-PK is important in nonhomologous DNA end joining, it was hypothesized that DNA-PK function might be important for radiation-enhanced integration. The ATM protein has been shown to be important in the recognition of a variety of types of DNA damage and to associate with DNA-PK under certain conditions. It was thus hypothesized that ATM might also play a role in radiation-enhanced integration. To test these hypotheses, radiation-enhanced integration was measured in hamster cells that are defective in the catalytic subunit of DNA-PK and in human cells containing mutant ATM. Radiation-enhanced integration was not detected in any of the cell lines with mutant PRKDC (also known as DNA-PKcs), but it was present in cells of the same lineage with wild-type PRKDC. Radiation-enhanced integration was defective in cells lacking kinase activation. ATM-deficient cell lines also showed defective radiation-enhanced integration. These data demonstrate that DNA-PK and ATM must both be active for radiation-enhanced integration to be observed.  相似文献   

15.
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.  相似文献   

16.
In eukaryotic cells, DNA double strand breaks (DSBs) cause the prompt phosphorylation of serine 139 at the carboxy terminus of histone H2AX to generate gamma-H2AX, detectable by Western blotting or immunofluorescence. The consensus sequence at the phosphorylation site implicates the phosphatidylinositol 3-like family of protein kinases in H2AX phosphorylation. It remains open whether ATM (ataxia telangiectasia mutated) is the major H2AX kinase, or whether other members of the family, such as DNA-PK (DNA dependent protein kinase) or ATR (ATM and Rad3 related), contribute in a functionally complementary manner. To address this question, we measured global H2AX phosphorylation in cell lysates and foci formation in individual cells of either wild type or mutant (ATM or DNA-PK) genetic background. Normal global phosphorylation kinetics is observed after irradiation in cells defective either in ATM or DNA-PK alone, suggesting a complementary contribution to H2AX phosphorylation. This is further supported by the observation that initial H2AX phosphorylation is delayed when both kinases are inhibited by wortmannin, as well as when ATM is inhibited by caffeine in DNA-PK deficient cells. However, robust residual global phosphorylation is detectable under all conditions of genetic or chemical inhibition suggesting the function of additional kinases, such as ATR. Treatment with wortmannin, caffeine, or UCN-01 produces a strong DNA-PK dependent late global hyperphosphorylation of H2AX, uncoupled from DNA DSB rejoining and compatible with an inhibition of late steps in DNA DSB processing. Evaluation of gamma-H2AX foci formation confirms the major conclusions made on the basis of global H2AX phosphorylation, but also points to differences particularly several hours after exposure to IR. The results in aggregate implicate DNA-PK, ATM and possibly other kinases in H2AX phosphorylation. The functional significance and the mechanisms of coordination in space and time of these multiple inputs require further investigation.  相似文献   

17.
Integration into the host cell DNA is an essential part of the retroviral life cycle and is required for the productive replication of a retrovirus. Retroviral integration involves cleavage of the host DNA and insertion of the viral DNA, forming an integration intermediate that contains two gaps, each with a viral 5' flap. The flaps are then removed, and the gap is filled by as yet unidentified nuclease and polymerase activities. It is thought that repair of these gaps flanking the site of retroviral integration is achieved by host DNA repair machinery. The ATM and Rad3-related protein (ATR) is a member of the phosphatidylinositol 3 kinase-related family of protein kinases that play a major role in sensing and triggering repair of DNA lesions in mammalian cells. In an effort to examine the role of ATR in retroviral integration, we used RNA interference to selectively downregulate ATR and measured integration efficiency. In addition, we examined the possible role that Vpr may play in enhancing integration and, in particular, whether activation of ATR by Vpr (Roshal et al., J. Biol. Chem. 278:25879-25886, 2003) will favor human immunodeficiency virus type 1 integration. We conclude that cells in which ATR has been depleted are competent for retroviral integration. We also conclude that the presence of Vpr as a virion-bound protein does not enhance integration of a lentivirus vector in dividing cells.  相似文献   

18.
Caffeine is an efficient inhibitor of DNA repair and DNA damage-activated checkpoints. We have shown recently that caffeine inhibits retroviral transduction of dividing cells, most likely by blocking postintegration repair. This effect may be mediated at least in part by a cellular target of caffeine, the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase. In this study, we present evidence that caffeine also inhibits efficient transduction of nondividing cells. We observed reduced transduction in caffeine-treated growth-arrested cells as well as caffeine-treated terminally differentiated human neurons and macrophages. Furthermore, this deficiency was observed with a human immunodeficiency virus type 1 (HIV-1) vector lacking Vpr, indicating that the effect is independent of the presence of this viral protein in the infecting virion. Finally, we show that HIV-1 transduction of nocodazole-arrested cells is reduced in cells that express an ATR dominant-negative protein (kinase-dead ATR [ATRkd]) and that the residual transduction of ATRkd-expressing cells is relatively resistant to caffeine. Taken together, these data suggest that the effect(s) of caffeine on HIV-1 transduction is mediated at least partly by the inhibition of the ATR pathway but is not dependent on the caffeine-mediated inhibition of cell cycle checkpoints.  相似文献   

19.
The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation.  相似文献   

20.
During mitosis, the phosphatidylinositol-3 (PI-3) family-related DNA damage checkpoint kinases ATM and ATR were found on the centrosomes of human cells. ATRIP, an interaction partner of ATR, as well as Chk1 and Chk2, the downstream targets of ATR or ATM, were also localized to the centrosomes. Surprisingly, the DNA-PK inhibitor vanillin enhanced the level of ATM on centrosomes. Accordingly, DNA-PKcs, the catalytic subunit of DNA-PK, was also found on the centrosomes. Vanillin altered the phosphorylation of Chk2 in the centrosomes and in whole cell extracts. Nucleoplasmic ATM co-immunoprecipitated with Ku70/86, the DNA binding subunits of DNA-PK, while vanillin diminished this association. Vanillin did not affect microtubule polymerization at the centrosomes but, surprisingly, caused a transient enhancement of alpha-tubulin foci in the nucleus. Interestingly, gamma-tubulin was also present in the nucleus and co-immunoprecipitated with ATR or BRCA1. DNA damage led to a reduction of the mentioned checkpoint proteins on the centrosomes but increased the level of gamma-tubulin at this organelle. Taken together, these results indicate that DNA damage checkpoint proteins may control the formation of gamma-tubulin and/or the kinetics of microtubule formation at the centrosomes, and thereby couple them to the DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号