首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin is able to down-regulate its specific cell surface receptor in cultured human lymphocytes. The effect of vanadate, a known insulinomimetic agent, was examined to determine whether it could mimic insulin to down-regulate the insulin receptor. Exposure of cultured human lymphocytes (IM-9) to vanadate (0-200 microM) resulted in a time- and dose-dependent decrease in cell surface insulin receptors to 60% of control, while insulin (100 nM) down-regulated to 40%. The vanadate effect, in contrast to the rapid effect of insulin, was slow to develop (4-6 h). Surface receptor recovery after 18 h exposure was rapid after vanadate removal (20 min), but it required hours after insulin suggesting the presence of an intracellular (cryptic) pool of receptors after vanadate treatment. Insulin binding to Triton X-100-solubilized whole cells after 18 h treatment revealed that total cell receptors had decreased to 50% of control after insulin but increased to 120 and 189% of control after 100 and 200 microM vanadate, respectively. Furthermore, vanadate inhibited the insulin-mediated loss of total cell receptors from 50 to 28%. Removal of cell surface receptors by trypsin before cell solubilization revealed that 100 microM vanadate increased insulin binding to 321% of control indicating an accumulation of intracellular receptors. Labeling of cell surface proteins with Na125I and lactoperoxidase followed by immunoprecipitation of solubilized receptors with anti-receptor antibody after incubation for various times up to 20 h and quantitation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that, while insulin shortened t1/2 from 7.3 to 5.3 h, vanadate prolonged receptor t1/2 to 14 h. No effect of vanadate was detected on insulin receptor tyrosine kinase activity with up to 4 h incubation at the vanadate concentrations used in this study. Furthermore, human growth hormone surface receptors were similarly down-regulated by vanadate. We conclude that 1) vanadate has an apparent insulin-like effect to down-regulate cell surface insulin receptors in cultured human lymphocytes; 2) in contrast to insulin-induced down-regulation which is associated with receptor degradation vanadate causes an accumulation of intracellular (cryptic) receptors and inhibits insulin receptor degradation; and 3) these effects of vanadate may be exerted on other cell surface receptors.  相似文献   

2.
The effect of down-regulation on the intracellular pool of insulin receptors and the role of glycosylation in recovery from down-regulation have been studied in fibroblastic cultures from the skin of non-diabetic mice. In control cultures, 55% of the total specific [125I]insulin-binding activity was in the intracellular compartment. Insulin caused a time- and concentration-dependent decrease in the number of cell surface insulin receptors, with no significant change in total insulin receptors. This decrease in surface receptors was accompanied by an increase in the specific binding of [125I]insulin in the intracellular compartment. Removal of insulin from down-regulated cells resulted in a time-dependent increase in the binding of [125I]insulin to surface receptors, reaching 90% of that in controls by 12 h. The recovery of surface insulin receptors after removal of insulin was blocked by incubation of cultures with tunicamycin, but not by cycloheximide. These results indicate that down-regulation of surface insulin receptors by insulin is associated with translocation of receptors into the intracellular pool and suggest that protein glycosylation is important in insulin receptor recycling and externalization.  相似文献   

3.
Chronic treatment of 3T3-C2 fibroblasts with insulin causes the slow (t1/2 = 3-4 h) down-regulation of cellular insulin receptor to a new steady state level by accelerating receptor decay (Knutson, V.P., Ronnett, G.V., and Lane, M.D. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2822-2826). In the present investigation, the synthesis and turnover of the receptor during the transition to the down-regulated state was examined by the heavy isotope density-shift method. It was observed that within two h after insulin addition, receptor decay increased abruptly for several hours then gradually declined until the "down-regulated" rate was achieved. The abrupt increase in receptor decay induced by insulin was preceded by a more rapid (t1/2 less than or equal to 10 min) translocation of cell surface receptor to an "intracellular" trypsin-resistant compartment. Thus, upon exposure to ligand, insulin receptor rapidly redistributes from the cell surface to an intracellular compartment, without an initial net loss of cellular receptors. The translocation process was rapidly reversed (t1/2 less than or equal to 20 min) upon removal of insulin. With prolonged exposure to insulin, the initial rapid translocation of receptor was followed by a slower inactivation of receptor apparently in the intracellular compartment. Cycloheximide, which lengthens receptor half-life by blocking a step in receptor inactivation, had no effect on receptor internalization. Internalization of insulin receptor and its bound ligand were, however, rapidly (less than 10 min) blocked by phenylarsine oxide. These results support the following sequence of events. Upon exposure to ligand, insulin receptors are translocated from the cell surface to an intracellular site which results in accelerated receptor decay and ultimately to a lower steady state cellular receptor level.  相似文献   

4.
Internalization, degradation, and insulin-induced down-regulation of insulin receptors were studied comparatively in transformed Chinese hamster ovary (CHO) cell lines, CHO.T and CHO.IR.ros, respectively expressing either the wild-type human insulin receptor (hIR) or a mutated hybrid receptor in which the transmembrane and cytoplasmic domains of hIR were replaced by corresponding domains of the transforming protein p68gag-ros (v-ros) of avian sarcoma virus UR2. At 37 degrees C, degradation of insulin receptors photoaffinity labeled on the cell surface (440 kDa) was most rapid for the hybrid hIR.ros (t1/2 1.0 +/- 0.1 h), intermediate for the wild-type hIR (t1/2 2.7 +/- 0.5 h), and slowest for the endogenous CHO insulin receptors (t1/2 3.7 +/- 0.7 h). Initial intracellular accumulation of the hIR.ros hybrid was also most rapid, reaching maximal amounts in 20 min following which the receptors disappeared rapidly from the intracellular compartment. In contrast, intracellular accumulation of the receptors in the CHO.T and CHO cells was slower, reaching maximal amounts in 60 min, and rapid disappearance of the receptors from the intracellular compartment did not occur. Chloroquine, a lysosomotropic agent, inhibited degradation of both the wild-type hIR and the chimeric hIR.ros and increased their intracellular accumulation. However, the chloroquine effect was much more marked for the hIR.ros receptors whose intracellular accumulation was increased by greater than 300% (in comparison with approximately 60% increase for the wild-type hIR), demonstrating marked intracellular degradation of the hybrid hIR.ros at chloroquine-sensitive sites. Insulin-induced down-regulation of the cell surface hIR.ros (52% loss in 3 h) was also more marked than the wild-type hIR (approximately 30% loss in 3 h). Thus, in the hybrid hIR.ros receptor, which was shown previously to exhibit insulin-stimulated autophosphorylation and kinase activity but not insulin-stimulated metabolic function, the capacity for internalization and down-regulation is not only preserved but is also markedly accelerated. These findings suggest that 1) the postreceptor coupling mechanisms mediating insulin-induced receptor internalization, degradation, and down-regulation are different from those mediating metabolic functions; and 2) v-ros may contain the structural information directing accelerated receptor catabolism.  相似文献   

5.
Binding and degradation of 125I-labelled insulin were studied in cultured foetal hepatocytes after exposure to the protein-synthesis inhibitors tunicamycin and cycloheximide. Tunicamycin (1 microgram/ml) induced a steady decrease of insulin binding, which was decreased by 50% after 13 h. As the total number of binding sites per hepatocyte was 20000, the rate of the receptor degradation could not exceed 13 sites/min per hepatocyte. Cycloheximide (2.8 micrograms/ml) increased insulin binding by 30% within 6 h, an effect that persisted for up to 25 h. This drug had a specific inhibitory effect on the degradation of proteins prelabelled for 10 h with [14C]glucosamine, without affecting the degradation of total proteins. Chronic exposure to 10 nM-insulin neither decreased insulin binding nor modified the effect of the drugs. The absence of down-regulation of insulin receptors cannot be attributed to rapid receptor biosynthesis in foetal hepatocytes. Cellular insulin degradation, which is exclusively receptor-mediated, was determined by two different parameters. First, the rate of release of degraded insulin into the medium was 600 molecules/min per hepatocyte with 1 nM labelled hormone, and increased (preincubation with cycloheximide) or decreased (tunicamycin) as a function of the amount of cell-bound insulin. Secondly, the percentage of cell-bound insulin degraded was not changed by the presence of protein-synthesis inhibitors (25-30%). The stability of insulin degradation suggested that this process was dependent on long-life proteinase systems. Such differences in degradation rates and cycloheximide sensitivity imply that hormone- and receptor-degradation processes utilize distinct pathways.  相似文献   

6.
The heavy isotope density shift method, in combination with a procedure for labeling cell surface insulin receptors, was used to determine the rate of transit of receptor to the cell surface from their site of synthesis and to follow the net rate of receptor removal from the plasma membrane in 3T3-L1 adipocytes. To label surface receptors, 125I-insulin was bound to cells at 4 degrees C and then covalently cross-linked to the receptors with disuccinimidyl suberate. The identity of the surface-labeled product as insulin receptor was established by immunoprecipitation with antireceptor antibody and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fully differentiated 3T3-L1 adipocytes were shifted to medium containing heavy (greater than 95% 15N, 13C and 2H) amino acids. The rates of appearance of newly synthesized heavy receptor at the cell surface and the loss of previously synthesized light receptor from the cell surface were followed by resolving labeled heavy and light surface receptors in CsCl density gradients and quantitating labeled receptor subunits by gel electrophoresis. It was shown that 2.5-3.0 h are required for newly synthesized insulin receptor to reach and become functional in the plasma membrane. Insulin-induced down-regulation of cellular insulin receptor level had no effect on the time required for the newly synthesized receptors to reach the cell surface. Down-regulation, however, increased the first order rate constants for the inactivation of cell surface insulin receptors from 0.046 to 0.10 h-1. The fact that the rate constants for inactivation of cell surface and total cellular insulin receptors were identical in the up-regulated state (0.046 and 0.044 h-1, respectively) or in the down-regulated state (0.10 and 0.096 h-1, respectively) suggests that the rate-limiting step in the receptor inactivation pathway occurs at the cell surface.  相似文献   

7.
The binding of erythropoietin (Epo) to its receptor leads to the transient phosphorylation of the Epo receptor (EpoR) and the activation of intracellular signaling pathways. Inactivation mechanisms are simultaneously turned on, and Epo-induced signaling pathways return to nearly basal levels after 30-60 min of stimulation. We show that proteasomes control these inactivation mechanisms. In cells treated with the proteasome inhibitors N-Ac-Leu-Leu-norleucinal (LLnL) or lactacystin, EpoR tyrosine phosphorylation and activation of intracellular signaling pathways (Jak2, STAT5, phosphatidylinositol 3-kinase) were sustained for at least 2 h. We show that this effect was due to the continuous replenishment of the cell surface pool of EpoRs in cells treated with proteasome inhibitors. Proteasome inhibitors did not modify the internalization and degradation of Epo.EpoR complexes, but they allowed the continuous replacement of the internalized receptors by newly synthesized receptors. Proteasome inhibitors did not modify the synthesis of EpoRs, but they allowed their transport to the cell surface. N-Ac-Leu-Leu-norleucinal, but not lactacystin, also inhibited the degradation of internalized Epo.EpoR complexes, most probably through cathepsin inhibition. The internalized EpoRs were not tyrosine-phosphorylated, and they did not activate intracellular signaling pathways. Our results show that the proteasome controls the down-regulation of EpoRs in Epo-stimulated cells by inhibiting the cell surface replacement of internalized EpoRs.  相似文献   

8.
A rapid one-step method was developed for harvesting and concentrating insulin receptors from solubilized adipocytes, which entails precipitating soluble receptors with polyethylene glycol and resuspending the receptor-containing pellet in a reduced volume of binding buffer. With this procedure 90-100% of receptors were recovered, while 80% of cellular protein was removed, thus resulting in a marked reduction of both ligand and receptor proteases and about a 5-fold purification of the receptor. More importantly, greater than 98% of the Triton X-100 detergent was removed during this procedure so that the reduced receptor affinity observed in solubilized extracts (due to detergent) was restored to normal. Reconstituted receptors exhibited normal binding characteristics similar to those observed for plasma membrane receptors. The general utility of our receptor precipitation-reconstitution method is highlighted by studies on insulin-induced translocation of receptors from the cell-surface to the cell-interior of adipocytes and studies on the assessment of the binding affinity of nascent intracellular receptors. The results of these studies are consistent with the following. 1) Insulin initiates endocytotic uptake of insulin receptors, which then recycle back to the cell-surface. 2) Chloroquine impairs the recycling of internalized receptors while preventing receptor degradation, resulting in the progressive trapping and accumulation of receptors within cells during insulin treatment. 3) Receptor translocation during acute insulin-induced down-regulation is stoichiometric in that receptors lost from the cell-surface can be quantitatively recovered within the cell-interior. 4) In the absence of ligand, these receptors within adipocytes are mainly newly synthesized receptors enroute to the cell-surface, and they possess an affinity similar, if not identical, to mature receptors on the plasma membrane.  相似文献   

9.
The human receptors for insulin-like growth factor 1 (IGF-1) and insulin, and two chimeric receptors consisting of ligand-binding, extracellular insulin receptor and intracellular IGF-1 receptor structures, have been expressed in NIH-3T3 fibroblasts. All four receptor types were synthesized, processed and transported to the cell surface to form high-affinity binding sites. All normal and chimeric receptors had an active tyrosine kinase which was regulated by homologous or heterologous ligands respectively. In addition, cell surface receptors were internalized efficiently and subjected to accelerated degradation in the presence of ligand. While all four types of receptor stimulated glucose transport with similar efficiency, they displayed significant differences in their mitogenic signalling potentials. Receptors with an IGF-1 receptor cytoplasmic domain were 10 times more active in stimulating DNA synthesis than the insulin receptor. In NIH-3T3 cells overexpressing wild-type and chimeric receptors, maximal growth responses obtained with IGF-1 or insulin alone were equivalent to those obtained with 10% fetal calf serum. We conclude that in the cell system employed the receptors for IGF-1 and insulin mediate short-term responses similarly, but display distinct characteristics in their long-term mitogenic signalling potentials.  相似文献   

10.
The kinetics of receptor internalization and recycling was directly determined in adipocytes by measuring 125I-insulin binding to total, intracellular, and cell-surface insulin receptors. In the absence of insulin 90% of all receptors were on the cell-surface and 10% were intracellular. Insulin (100 ng/ml) rapidly altered this distribution by translocating surface receptors to the cell-interior through a temperature and energy dependent process. Surface-derived receptors were seen within cells as early as 30 s and accumulated intracellularly at the rate of approximately 20,000/min (t 1/2 = 2.7 min). After 6 min the size of the intracellular receptor pool plateaued (for up to 2 h), with 30% of surface receptors residing within the cell. This plateau was due to the attainment of an equilibrium between receptor uptake and recycling, since removal of insulin (to stop receptor uptake) was followed by both a rapid depletion of intracellular receptors and a a concomitant and stoichiometric reappearance of receptors on the cell-surface. Receptors were efficiently recycled, with little or no net loss observed even after 4 h of insulin treatment; however, recycling could be partially inhibited (approximately 10%) by several agents (e.g. chloroquine and Tris). Tris treatment of adipocytes in the presence of insulin led to 50% loss of surface and total receptors at 2 and 4 h, respectively. Since chloroquine prevented the decrease in total receptors, but not the loss of surface receptors, it appears that Tris impairs recycling by diverting a portion of incoming receptors to a chloroquine-inhibitable degradative site. From these results we conclude that: 1) insulin triggers endocytotic uptake of insulin-receptor complexes; 2) internalized receptors are then rapidly reinserted into the plasma membrane, and the receptors can traverse this recycling pathway within 6 min; 3) prolonged recycling does not normally result in measurable receptor loss, but when receptors are prevented from recycling, they become trapped intracellularly and are shunted to a chloroquine-sensitive degradative pathway; and 4) chloroquine and Tris are only partially effective inhibitors of receptor recycling.  相似文献   

11.
Insulin stimulates the accumulation of iron by isolated fat cells by increasing the uptake of diferric transferrin. Analysis of the cell-surface binding of diferric 125I-transferrin indicated that insulin caused a 3-fold increase in the cell surface number of transferrin receptors. This result was confirmed by the demonstration that insulin increases the binding of an anti-rat transferrin receptor monoclonal antibody (OX-26) to the surface of fat cells. The basis of this effect of insulin was examined by investigating the number of transferrin receptors in membrane fractions isolated from disrupted fat cells. Two methods were employed. First the binding isotherm of diferric 125I-transferrin to the isolated membranes was studied. Second, the membranes were solubilized with detergent, and the number of transferrin receptors was measured by immunoblotting using the monoclonal antibody OX-26. It was observed that insulin treatment of intact fat cells resulted in an increase in the number of transferrin receptors located in the isolated plasma membrane fraction of the disrupted fat cells. Furthermore, the increase in the number of plasma membrane transferrin receptors was associated with a concomitant decrease in the transferrin receptor number in a low density microsome fraction previously shown to consist of intracellular membranes. This redistribution of transferrin receptors between cellular membrane fractions in response to insulin is remarkably similar to the regulation by insulin of glucose transporters and type II insulin-like growth factor receptors. We conclude that insulin stimulates fat cell iron uptake by a mechanism that may involve the redistribution of transferrin receptors from an internal membrane compartment (low density microsomes) to the cell surface (plasma membrane).  相似文献   

12.
A-431 cells were treated with inhibitors of either N-linked glycosylation (tunicamycin or glucosamine) or of N-linked oligosaccharide processing (swainsonine or monensin) to examine the glycosylation of epidermal growth factor (EGF) receptors and to determine the effect of glycosylation modification on receptor function. The receptor was found to be an Mr = 130,000 polypeptide to which a relatively large amount of carbohydrate is added co-translationally in the form of N-linked oligosaccharides. Processing of these oligosaccharides accounts for the 10,000-dalton difference in electrophoretic migration between the Mr = 160,000 precursor and Mr = 170,000 mature forms of the receptor. No evidence was found for O-linked oligosaccharides on the receptor. Mr = 160,000 receptors resulting from swainsonine or monensin treatment were present on the cell surface and retained full function, as judged by 125I-EGF binding to intact cells and detergent-solubilized extracts and by in vitro phosphorylation in the absence or presence of EGF. On the other hand, when cells were treated with tunicamycin or glucosamine, ligand binding was reduced by more than 50% in either intact cells or solubilized cell extracts. The Mr = 130,000 receptors synthesized in the presence of these inhibitors were not found on the cell surface. In addition, no Mr = 130,000 phosphoprotein was detected in the in vitro phosphorylation of tunicamycin or glucosamine-treated cells. It appears, therefore, that although terminal processing of N-linked oligosaccharides is not necessary for proper translocation or function of the EGF receptor, the addition of N-linked oligosaccharides is required.  相似文献   

13.
Incubation of monolayers of HT29-D4 cells (a clone of the human colonic adenocarcinoma cell line HT29) in the presence of 17.5 microM cycloheximide resulted in an increase in the number of vasoactive intestinal peptide (VIP) binding sites at the cell surface without any change in the affinity of receptor for its ligand. The increase in 125I-VIP-binding capacity was dose-dependent between 0.35 microM and 17.5 microM cycloheximide and was correlated with the inhibition of protein biosynthesis. At higher concentrations of drug (17.5-100 microM) a plateau corresponding to a twofold increase in VIP-binding capacity was reached independently of the extent of protein synthesis inhibition. We found that VIP receptors of HT29-D4 cells with such an enhanced binding capacity behaved like those of control cells with respect to receptor internalization and recycling (i.e. the cycle of occupied receptors was insensitive to cycloheximide). After inactivation of 90% of cell-surface VIP receptors by alpha-chymotrypsin, we observed a biphasic kinetic of reappearance of VIP-binding sites. 40% of VIP-binding sites reappeared very quickly (less than 5 min) and 100% within 17 h. The fast recovery of VIP receptors was probably due to the deployment of new binding sites from an intracellular pool. The rate and extent of recovery of these receptors were similar in control cells and in cycloheximide-treated cells. However, the slow recovery was inhibited in cycloheximide-treated cells probably because a pool of immature receptors was depleted by the drug before the alpha-chymotrypsin treatment. Our data are consistent with the existence of two different intracellular pathways of occupied and unoccupied VIP receptors.  相似文献   

14.
The dependence of the regulation of insulin receptors by insulin on the time hepatocytes were maintained in culture and the relationship between the return of down-regulated receptors and glycogen synthesis from labelled glucose were investigated in primary cultures of adult rat hepatocytes. Insulin receptor numbers, but not ligand affinity, decreased significantly within the first 24 h of culture, even in the absence of insulin, and then returned to the immediate 'post-attachment' level during 24-48 h. Therefore, down-regulation of insulin receptors by 10 nmol/l insulin was only minor during the 1st day in culture, but amounted to 50% of control levels after the 2nd day, whereas the rate of insulin degradation remained unaltered throughout the entire period of culture. When down-regulated monolayers were switched to insulin-free medium, receptors returned to control levels within 5-10 h. The reduced basal rate of glycogenesis as well as insulin-sensitivity and insulin responsiveness of this metabolic pathway also gradually increased to control levels. However, the time-dependent receptor return was dissociated from the increase in insulin-sensitivity, emphasising the importance of postbinding events. Since the changes both in basal rates and in insulin responsiveness of glycogenesis during the period of receptor return were inversely related to differences in the actual glycogen content between control and down-regulated cells, cellular glycogen content might participate in the regulation of glycogenesis as a 'feedback inhibitor'.  相似文献   

15.
The translocation of occupied surface insulin receptors to the nuclei of isolated hepatocytes was studied using the biologically active photosensitive insulin derivative, B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin (NAPA-DP-insulin). When hepatocytes were photolabeled at 4 degrees C, extensively washed, and then further incubated at 37 degrees C for 1 h, photolabeled insulin receptors, which were initially localized to the cell surface, accumulated in the subsequently isolated nuclei. When the isolated nuclei were solubilized and subjected to polyacrylamide gel electrophoresis and radioautography, labeled proteins with Mr identical to the cell surface insulin receptor were detected. Light microscopic radioautography of nuclei isolated from cells incubated for 1 ha at 37 degrees C demonstrated that 28% of these nuclei were specifically labeled with one or more grains. Electron microscopic radioautography of intact cultured hepatocytes, incubated 60 min at 37 degrees C, revealed that 26% of the thin-sectioned nuclei contained at least a single grain and 8.3% of the total cell-associated associated grains were located over the nuclei. Only 1.6% of grains were localized to lysosomes. In contrast, if photolabeled hepatocytes were incubated at 4 degrees C for up to 2 h, negligible accumulation of nuclear radioactivity was observed by polyacrylamide gel electrophoresis on light or electron microscopic radioautography. Conclusions are as follows. Occupied cell surface insulin receptors can internalize and translocate to the nucleus of intact hepatocytes by a time- and temperature-dependent mechanism. Accumulation and possible degradation of insulin receptors in lysosomes involves only a small percentage of the receptors internalized. Nuclear translocation of occupied cell surface insulin receptors may be a mechanism which mediates insulin's long term effects.  相似文献   

16.
The effects of protein synthesis inhibitors and the lysosomotropic agent chloroquine on the metabolism of the insulin receptor were examined. Through the use of the heavy-isotope density shift technique, cycloheximide was found to inhibit both the synthesis of new insulin receptor and the inactivation of old cellular insulin receptor. Upon investigation of the locus of this effect of protein synthesis inhibition, it was found that cycloheximide did not inhibit 1) the translocation of receptor from the cell surface to an intracellular site, 2) the recycling of receptor from the internal site back to the plasma membrane, nor 3) the degradation of insulin. Cycloheximide did, however, rapidly and completely inhibit the inactivation of the insulin receptor. In the presence of extracellular insulin, this effect of cycloheximide resulted in the long-term (6 h) accumulation of receptor in a trypsin-resistant intracellular compartment. Puromycin and pactamycin, protein synthesis inhibitors with mechanisms of action which differ from cycloheximide, produced the same effects on insulin receptor metabolism as cycloheximide, indicating that this effect on receptor metabolism is due to the inhibition of protein synthesis and not a secondary effect of cycloheximide. Actinomycin D also inhibited the inactivation of receptor. Chloroquine inhibited the receptor-mediated degradation of insulin, but had no effect on either the internalization or inactivation of the insulin receptor. The insulin-induced recycling of the internalized receptor was inhibited by chloroquine, possibly through the inhibition of the discharge of insulin from the insulin-receptor complex. From these observations, we suggest that 1) a protein factor is required to inactivate the insulin receptor, 2) this protein and the messenger RNA coding for the protein have short cellular half-lives, and 3) insulin degradation and insulin receptor inactivation are distinct, separable processes which not only occur at different rates, but possibly occur in distinct subcellular locations.  相似文献   

17.
Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation. In summary, these results indicate that the loss of cell surface insulin receptors in adipocytes involves: 1) initial internalization of the receptors to a nondegradative intracellular compartment by a process that is relatively insensitive to ATP depletion, followed by 2) a highly energy-dependent unidirectional translocation of the receptors from this compartment to chloroquine-sensitive site(s) of degradation.  相似文献   

18.
Insulin receptor regulation was studied in the rat erythroblastic leukemic (EBL) cell in primary culture. After 1-2-hr incubations in medium containing 12 essential amino acids, glutamine, and serine, EBL cell protein synthesis and insulin receptor concentrations were increased compared to cells incubated without serine. Deficiency of medium isoleucine in the presence of serine rapidly decreased protein synthesis and insulin binding to intact cells. Supplementation of deficient media with serine or isoleucine had no effect on total insulin receptor numbers measured in solubilized cell preparations. Increased insulin binding following serine exposure was seen with binding assays at both 4 and 37 degrees C. Dissociation experiments to quantitate intracellular ligand after 37 degrees C binding assays showed increased in both surface binding and intracellular [125I]insulin accumulation. These data combined with previous observations suggest that amino acids essential for this cell are required for the rapid synthesis of a labile regulatory protein which facilitates the redistribution and/or recycling of insulin receptors.  相似文献   

19.
The treatment of confluent embryonic Swiss mouse fibroblasts (3T3-C2 cells) with glucocorticoids has been shown to result in a time- and dose-dependent increase in the number of cellular insulin receptors (Knutson, V. P., Ronnett, G. V., and Lane, M. D. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2822-2826). Cellular events relating to the insulin receptor and insulin responsiveness which occur over the time course of the transition to the "up-regulated" steady state are described. Over the 48-h transition from the basal to the up-regulated steady state, a transient increase in the level of intracellular receptor was detected with a 3-5-fold increase in intracellular receptor found 12 h after steroid administration. Through the use of the heavy isotope density shift, this increase in the intracellular receptor population was preceded by a decrease in the rate of receptor inactivation, with no change in receptor synthesis. Insulin-induced receptor down-regulation was abolished after 12 h of dexamethasone treatment, when the intracellular receptor level was elevated. Nevertheless, the cells maintained the ability to internalize receptor in response to insulin binding. The hormonal responsiveness of the cells over the glucocorticoid-induced transition was assessed by the ability of insulin to stimulate the cellular uptake of 2-deoxyglucose and aminoisobutyric acid. Glucose transport was transiently increased at a time when the intracellular population of receptor was transiently elevated. Glucocorticoid treatment ultimately led to a loss of insulin-sensitive glucose transport. Insulin-stimulated amino acid transport was transiently abolished when the intracellular population of receptor was high. With chronic steroid treatment, the sensitivity of the amino acid transporter was increased above control levels. These data would indicate that glucocorticoids have no short- or long-term effect on insulin receptor synthesis; the insulin-induced internalization of insulin receptor alone is not sufficient to induce a cellular response to insulin; and the cellular events leading to the transient accumulation of intracellular receptor are coupled to the cellular responsiveness of the cells to insulin.  相似文献   

20.
The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl-125I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl-125I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The low density microsomes were previously shown to contain intracellular membranes (Oka, Y., and Czech, M.P. (1984) J. Biol. Chem. 259, 8125-8133). The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II, measured by the binding of anti-IGF-II receptor antibody to cells, remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time, as evidenced by a large increase in the photolabeling of intracellular membrane IGF-II receptors when cells are incubated at 37 degrees C with insulin and 4-azidobenzoyl-125I-IGF-II prior to photoactivation; and 3) increases the rate of cellular 125I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody. The results indicate that the action of insulin to elevate the steady state number of cell surface IGF-II receptors leads to an increased internalization flux of IGF-II-bound receptors, mediating increased IGF-II uptake and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号