首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the pseudohalide thiocyanate (SCN(-)) is the preferred substrate for eosinophil peroxidase (EPO) in fluids of physiologic halide composition, the product(s) of this reaction have not been directly identified, and mechanisms underlying their cytotoxic potential are poorly characterized. We used nuclear magnetic resonance spectroscopy (NMR), electrospray ionization mass spectrometry, and quantitative chemical analysis to identify the principal reaction products of both the EPO/SCN(-)/H(2)O(2) system and activated eosinophils as roughly equimolar amounts of OSCN(-) (hypothiocyanite) and OCN(-) (cyanate). Red blood cells exposed to increasing concentrations of OSCN(-)/OCN(-) are first depleted of glutathione, after which glutathione S-transferase and glyceraldehyde-3-phosphate dehydrogenase then ATPases undergo sulfhydryl (SH) reductant-reversible inactivation before lysing. OSCN(-)/OCN(-) inactivates red blood cell membrane ATPases 10-1000 times more potently than do HOCl, HOBr, and H(2)O(2). Exposure of glutathione S-transferase to [(14)C]OSCN(-)/OCN(-) causes SH reductant-reversible disulfide bonding and covalent isotope labeling. We propose that EPO/SCN(-)/H(2)O(2) reaction products comprise a potential SH-targeted cytotoxic system that functions in striking contrast to HOCl, the highly but relatively indiscriminantly reactive product of the neutrophil myeloperoxidase system.  相似文献   

2.
Marine bacterioplankton were isolated and grown in batch cultures until their growth became limited by organic carbon (C), nitrogen (N), or phosphorus (P). Samples were taken from the cultures at both the exponential and stationary phases. The elemental composition of individual bacterial cells was analyzed by X-ray microanalysis with an electron microscope. The cell size was also measured. The elemental content was highest in exponentially growing cells (149 +/- 8 fg of C cell(-1), 35 +/- 2 fg of N cell(-1), and 12 +/- 1 fg of P cell(-1); average of all isolates +/- standard error). The lowest C content was found in C-limited cells (39 +/- 3 fg of C cell(-1)), the lowest N content in C- and P-limited cells (12 +/- 1 and 12 +/- 2 fg of N cell(-1), respectively), and the lowest P content in P-limited cells (2.3 +/- 0.6 fg of P cell(-1)). The atomic C:N ratios varied among treatments between 3.8 +/- 0.1 and 9.5 +/- 1.0 (average +/- standard error), the C:P ratios between 35 +/- 2 and 178 +/- 28, and the N:P ratios between 6.7 +/- 0.3 and 18 +/- 3. The carbon-volume ratios showed large variation among isolates due to different types of nutrient limitation (from 51+/- 4 to 241 +/- 38 fg of C microm(-1); average of individual isolates and treatments +/- standard error). The results show that different growth conditions and differences in the bacterial community may explain some of the variability of previously reported elemental and carbon-volume ratios.  相似文献   

3.
4.
The luciferin-luciferase bioluminescence reaction was used to estimate cell numbers of Campylobacter jejuni and Campylobacter coli in broth cultures based on a linear relationship between cell numbers (in excess of 10(4) to 10(5] and ATP levels. The sensitivity was lower than that obtained with Escherichia coli. The calculated amount of intracellular ATP per cell of C. jejuni and C. coli ranged from 1.7 to 2.1 fg.  相似文献   

5.
The luciferin-luciferase bioluminescence reaction was used to estimate cell numbers of Campylobacter jejuni and Campylobacter coli in broth cultures based on a linear relationship between cell numbers (in excess of 10(4) to 10(5] and ATP levels. The sensitivity was lower than that obtained with Escherichia coli. The calculated amount of intracellular ATP per cell of C. jejuni and C. coli ranged from 1.7 to 2.1 fg.  相似文献   

6.
Nagy P  Alguindigue SS  Ashby MT 《Biochemistry》2006,45(41):12610-12616
In an effort to reconcile conflicting reports regarding the spectra of the human defense factor hypothiocyanite (OSCN(-)), we have synthesized OSCN(-) by three methods and characterized the product spectroscopically. Method I is lactoperoxidase-catalyzed oxidation of SCN(-) by H(2)O(2) at pH 7. Method II is hydrolysis of (SCN)(2) at pH 13. Method III is oxidation of SCN(-) by OX(-) (X = Cl and Br) at pH 13. All three methods produced essentially the same initial UV, (13)C NMR, and (15)N NMR spectra. The UV spectrum reveals a lambda(max) of 376 nm, which is a previously unreported distinguishing feature. The (13)C NMR spectrum (delta = 127.8 ppm at pH 13 vs dioxane at 66.6 ppm) is comparable to those that have been previously reported for OSCN(-) as prepared by methods I and II (although in some cases different assignments have been made). However, the (15)N NMR spectrum we measure (delta = -80.6 ppm at pH 13 vs NO(3)(-) at 0 ppm) contrasts with previous reports. We conclude that all three methods produce the same species, and the spectra are now self-consistent with the formulation OSCN(-).  相似文献   

7.
Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass.  相似文献   

8.
Abstract— The effect of stimulating the electric organ of Torpedo marmorata , anaesthetized with 0.01% Tricaine methane sulphonate, by means of electrical stimulation (5/s) administered via an electrode placed on the electric lobe has been studied electrophysiologically, biochemically and morphologically. The response of the organ declined to about 50 per cent of its initial value after about 500 stimuli, by a further 10 per cent after another 500 stimuli and then to about 12 per cent of the initial value after a further 1000 stimuli. Thereafter the response fell off progressively. However, even when the response was less than 1 per cent of its initial value, the organ had considerable powers of recuperation during a 30-s rest period, to 30–50 per cent of its initial value.
The fall in response was accompanied by a reduction in vesicle size and number, an increase in the area of the presynaptic membrane and a fall in the protein, total nucleotide, ATP and acetylcholine content of the vesicle fraction isolated from the stimulated tissue. However, whereas vesicle numbers and the protein and total nucleotide content of the vesicle fraction fell by only about 50 per cent, vesicular ATP and acetylcholine levels were reduced to about 10 per cent. An analysis of the covariance of vesicular ATP and acetylcholine showed an initial loss of an acetylcholine-rich (relative to ATP) population of vesicles. The early loss of vesicular protein and nucleotide and vesicle numbers as well as the morphological changes seen would be consistent with a loss of vesicles due to fusion with the external membrane. The preferential loss of acetylcholine and ATP from the vesicle fraction indicates that the vesicles surviving the stimulation procedure have been utilized in a number of cycles causing the progressive fall in vesicle volume, and acetylcholine and ATP content.  相似文献   

9.
Mass sequencing of cDNA libraries from salivary glands of triatomines has resulted in the identification of many novel genes of unknown function. The aim of the present work was to develop a functional RNA interference (RNAi) technique for Rhodnius prolixus, which could be widely used for functional genomics studies in triatomine bugs. To this end, we investigated whether double-stranded RNA (dsRNA) can inhibit gene expression of R. prolixus salivary nitrophorin 2 (NP2) and what impact this might have on anticoagulant and apyrase activity in the saliva. dsRNA was introduced by two injections or by ingestion. RT-PCR of the salivary glands showed that injections of 15 microg of NP2 dsRNA in fourth-instar nymphs reduced gene expression by 75+/-14% and that feeding 1 microg/microL of NP2 dsRNA into second-instar nymphs (approx. 13 microg in total) reduced gene expression by 42+/-10%. Phenotype analysis showed that saliva of normal bugs prolonged plasma coagulation by about four-fold when compared to saliva of knockdown bugs. These results and the light color of the salivary gland content from some insects are consistent with the knockdown findings. The findings suggest that RNAi will prove a highly valuable functional genomics technique in triatomine bugs. The finding that feeding dsRNA can induce knockdown is novel for insects.  相似文献   

10.
Peroxidase activity in human saliva is composed of salivary peroxidase (80%), of salivary glandular origin, and myeloperoxidase (20%), of leukocyte origin. The term oral peroxidase (OPO) is used here to denote the total activity of both peroxidase species. Using the 2-nitrobenzoic acid-thiocyanate assay, OPO activity was measured in the saliva of nonsmokers after exposure to gas-phase cigarette smoke (CS) in an in vitro system using three puffs of CS in 1 h. A marked decrease of 76% of activity was observed following three puffs of CS. In order to elucidate the mechanism by which CS caused loss of OPO activity, several oxidants and antioxidants were applied to saliva in vitro in the presence and absence of CS. No protection for CS-induced loss of OPO activity occurred in the presence of glutathione, N-acetylcysteine, ascorbic acid, or Desferal. Exposure of saliva to purified aldehydes present in CS did not significantly affect OPO loss of activity. Similarly, ascorbic acid in the presence of FeCl(3) and nicotine also had no effect on OPO activity. Exposure of OPO to cyanate at levels present in CS caused a 65-70% loss of OPO activity, which was reversible after 24 h of dialysis. Moreover, hydroxocobalamin, a known cyanate chelator, could prevent CS- and potassium cyanide-induced inactivation of OPO by 70-90%. The results show that hydrogen cyanide, known to be present in microgram amounts per cigarette, is likely to be the species in CS responsible for loss of salivary OPO activity. The finding of reduced salivary OPO levels after CS exposure may represent a contributory mechanism for CS-related compromises in antimicrobial defenses in the aerodigestive tract.  相似文献   

11.
The aim of this study was to evaluate genome size and ploidy of the dimorphic pathogenic fungus Paracoccidioides brasiliensis. The cell cycle analysis of 10 P. brasiliensis isolates by flow cytometry (FCM) revealed a genome size ranging from 26.3+/-0.1Mb (26.9+/-0.1fg) to 35.5+/-0.2Mb (36.3+/-0.2fg) per uninucleated yeast cell. The DNA content of conidia from P. brasiliensis ATCC 60855-30.2+/-0.8Mb (30.9+/-0.8fg) -showed no significant differences with the yeast form, possibly excluding the occurrence of ploidy shift during morphogenesis. The ploidy of several P. brasiliensis isolates was assessed by comparing genome sizing by FCM with the previously described average haploid size obtained from electrophoretic karyotyping. The analysis of intra-individual variability of a highly polymorphic P. brasiliensis gene, GP43, indicated that only one allele seems to be present. Overall, the results showed that all analysed isolates presented a haploid, or at least aneuploid, DNA content and no association was detected between genome size/ploidy and the clinical-epidemiological features of the studied isolates. This work provides new knowledge on P. brasiliensis genetics/genomics, important for future research in basic cellular/molecular mechanisms and for the development/design of molecular techniques in this fungus.  相似文献   

12.
Glutathione transferases (GSTs) are a superfamily of detoxifying enzymes over-expressed in tumor tissues and tentatively proposed as biomarkers for localizing and monitoring injury of specific tissues. Only scarce and contradictory reports exist about the presence and the level of these enzymes in human saliva. This study shows that GSTP1-1 is the most abundant salivary GST isoenzyme, mainly coming from salivary glands. Surprisingly, its activity is completely obscured by the presence of a strong oxidizing agent in saliva that causes a fast and complete, but reversible, inactivation. Although salivary α-defensins are also able to inhibit the enzyme causing a peculiar half-site inactivation, a number of approaches (mass spectrometry, site directed mutagenesis, chromatographic and spectrophotometric data) indicated that hypothiocyanite is the main salivary inhibitor of GSTP1-1. Cys47 and Cys101, the most reactive sulfhydryls of GSTP1-1, are mainly involved in a redox interaction which leads to the formation of an intra-chain disulfide bridge. A reactivation procedure has been optimized and used to quantify GSTP1-1 in saliva of 30 healthy subjects with results of 42±4 mU/mg-protein. The present study represents a first indication that salivary GSTP1-1 may have a different and hitherto unknown function. In addition it fulfills the basis for future investigations finalized to check the salivary GSTP1-1 as a diagnostic biomarker for diseases.  相似文献   

13.
A recently discovered enzyme system produces antibacterial hypothiocyanite (OSCN(-)) in the airway lumen by oxidizing the secreted precursor thiocyanate (SCN(-)). Airway epithelial cultures have been shown to secrete SCN(-) in a CFTR-dependent manner. Thus, reduced SCN(-) availability in the airway might contribute to the pathogenesis of cystic fibrosis (CF), a disease caused by mutations in the CFTR gene and characterized by an airway host defense defect. We tested this hypothesis by analyzing the SCN(-) concentration in the nasal airway surface liquid (ASL) of CF patients and non-CF subjects and in the tracheobronchial ASL of CFTR-ΔF508 homozygous pigs and control littermates. In the nasal ASL, the SCN(-) concentration was ~30-fold higher than in serum independent of the CFTR mutation status of the human subject. In the tracheobronchial ASL of CF pigs, the SCN(-) concentration was somewhat reduced. Among human subjects, SCN(-) concentrations in the ASL varied from person to person independent of CFTR expression, and CF patients with high SCN(-) levels had better lung function than those with low SCN(-) levels. Thus, although CFTR can contribute to SCN(-) transport, it is not indispensable for the high SCN(-) concentration in ASL. The correlation between lung function and SCN(-) concentration in CF patients may reflect a beneficial role for SCN(-).  相似文献   

14.
The participation of ecto-ATP diphosphohydrolase (CD39; ecto-NTPDase) and ecto-5'-nucleotidase (CD73) activities in the nucleotide hydrolysis by salivary gland cells from rats was evaluated. We investigated the biochemical characteristics of these ectoenzymes in cells cultured from submandibular salivary glands of rats. The V(max) for the hydrolysis of ATP, ADP and AMP were 2275+/-153 (mean+/-SEM, n = 4), 941+/-96 (mean+/-SEM, n = 5) and 175+/-5 (mean+/-SEM, n = 5) nmol Pi liberated per min per mg of protein, respectively. The K(m) values for ATP, ADP and AMP were 224+/-8 microM (mean+/-SEM, n = 4), 163+/-15 microM (mean+/-SEM, n = 5) and 117+/-5 microM (mean+/-SEM, n = 5), respectively. The competition plot showed that ATP and ADP were hydrolyzed at the same active site on the enzyme. It may be postulated that the physiological role for this ecto-enzyme cascade is to terminate the action of the co-transmitter ATP, generating adenosine.  相似文献   

15.
Inhibition of adherence of bacteria to epithelial cells contributes to a reduction of infections by these bacteria. We have shown that the Anton blood group antigen, the erythrocyte receptor for Haemophilus influenzae (van Alphen et al. 1986, FEMS Microbiol. Lett. 37, 69-71), occurs in saliva, that the occurrence is not related to the secretor state of the donor of the saliva and that saliva containing Anton antigen could not inhibit the adherence of H. influenzae to oropharynx epithelial cells. Anton antigen was detected in saliva samples of 14 donors by immunoblotting with two different anti-Anton sera. The amount of Anton antigen correlated with the ability of H. influenzae to adhere to the epithelial cells of the donor of the saliva: 4.1 +/- 0.1 Anton antigen units for donors with more than 50 H. influenzae per cell and 1.6 +/- 0.5 units for donors with less adhering epithelial cells. No correlation between the amount of Anton antigen in saliva and secretor status of the donor was observed. Adherence of H. influenzae to epithelial cells was not inhibited by saliva of secretors (N = 11) or non-secretors (N = 3). The same saliva did not inhibit the interaction of the bacteria with Anton antigen bearing erythrocytes as measured by haemagglutination inhibition. This indicates that the amount of Anton antigen in saliva is probably too low to interfere with the interaction of H. influenzae with oropharynx epithelial cells and erythrocytes.  相似文献   

16.
In this study, we evaluated the adenosine triphosphate (ATP) content of individual domestic cat oocytes before and after in vitro maturation and of different stages of in vitro-produced embryos. To investigate the effects of assisted-hatching technique on the ATP content and total cell number, the zona pellucida of in vitro-produced blastocysts and expanded blastocysts (recovered 144 h postinsemination [hpi]) was completely removed by pronase treatment. The average (mean +/- SEM) ATP content of nonmatured oocytes (3.47 +/- 0.18 pmol) was significantly (P < 0.01) higher than that of in vitro-matured oocytes (2.17 +/- 0.10 pmol). After in vitro fertilization and culture, the ATP content of two-cell stages (24 hpi) was 1.17 +/- 0.08 pmol, which increased to 1.47 +/- 0.19 and 1.88 +/- 0.32 pmol at the four- (40 hpi) and eight-cell (48 hpi) stages, respectively. The ATP content then decreased to 1.48 +/- 0.10 pmol in 16-cell embryos (64 hpi), reaching a minimum of 0.49 +/- 0.04 pmol at the morula stage (120 hpi). Blastocysts, expanded blastocysts (both 144 hpi), and hatching blastocysts (192 hpi) revealed ATP levels of 1.05 +/- 0.09, 1.79 +/- 0.01, and 4.17 +/- 0.21 pmol, respectively. After enzymatic removal of the zona pellucida (ERZP) at 144 hpi, ATP content and total cell numbers of blastocysts (4.15 +/- 0.37 pmol of ATP, 328.3 +/- 48.5 cells) and expanded blastocysts (5.81 +/- 0.54 pmol of ATP, 430.1 +/- 29.7 cells) analyzed at 192 hpi were significantly (P < 0.001) higher than in their nontreated counterparts (blastocysts: 1.00 +/- 0.09 pmol of ATP, 65.3 +/- 4.6 cells; expanded blastocysts: 1.79 +/- 0.11 pmol of ATP, 121.4 +/- 6.5 cells). Our study describes, to our knowledge for the first time, changes in the energy status of domestic cat oocytes before and after maturation and during in vitro development after fertilization. The ERZP markedly increased the ATP content and total cell number of blastocyst stages, suggesting that this technique may improve the quality and viability of in vitro-produced domestic cat embryos.  相似文献   

17.

Objective

To evaluate the in situ antibacterial activity of a mouthrinse with 0.2% Chlorhexidine (M-0.2% CHX) on undisturbed de novo plaque-like biofilm (PL-biofilm) and on salivary flora up to 7 hours after its application.

Methods

A special acrylic appliance was designed, with 3 inserted glass disks on each buccal side, allowing for PL-biofilm growth. Fifteen healthy volunteers wore the appliance for 48 hours and then performed an M-0.2% CHX; disks were removed at 30 seconds and 1, 3, 5 and 7 hours after the mouth-rinsing. Applying a washout period, saliva samples were collected from each volunteer at 30 seconds and 1, 3, 5 and 7 hours after performing an M-0.2% CHX. The PL-biofilm and saliva samples were analysed by confocal laser scanning and epifluorescence microscopes, respectively.

Results

At 30 seconds after M-0.2% CHX, the levels of viable bacteria detected in saliva were significantly lower than those observed in PL-biofilm. The difference in the percentage of live bacteria detected in saliva was significantly higher than that observed in PL-biofilm at 5 and 7 hours after M-0.2% CHX.

Conclusion

After a single mouthrinse of the 0.2% CHX formulation tested in the present study, the 2-day PL-biofilm presented a significantly higher resistance to this antiseptic in situ than that observed in salivary flora. However, this 0.2% CHX formulation showed a higher substantivity on PL-biofilm than on salivary flora at 5 and 7 hours after mouth-rinsing, which could be related to the slower growth rate of PL-biofilm and the possible reservoir function for antimicrobial agents associated with the undisturbed de novo PL-biofilm.  相似文献   

18.
Scavenger receptor gp340 aggregates group A streptococci by binding pili   总被引:1,自引:0,他引:1  
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.  相似文献   

19.
In normal rats, we determined Edwin's (35 +/- 5) and modified (1 +/- 0) segmentation indices, Hynek's numbers (3.2 +/- 0.0) and neutrophil counts with different numbers of nuclear lobes (more than 99 per cent of neutrophils had 2-5 lobes and 0.6 +/- 0.4 per cent of neutrophils had 6 or more nuclear lobes). Neutrophil counts with 6 or more nuclear lobes seem to be sufficient for determination of experimental induction of hypersegmentation in rat neutrophils.  相似文献   

20.
Mechanically induced ATP release from human airway epithelial cells regulates mucociliary clearance through cell surface nucleotide receptors. Ectoenzymes detected on these cells were recently shown to terminate ATP-mediated responses by sequential dephosphorylation of extracellular ATP into ADP, AMP, and adenosine. We now demonstrate that an ecto-adenylate kinase (ecto-AK) contributes to the metabolism of adenine nucleotides on human airway epithelial surfaces by the reversible reaction: ATP + AMP 2ADP. This phosphotransferase exhibited a bilateral distribution on polarized primary cultures of human bronchial epithelial cells with a 4-fold higher activity on the mucosal surface. Ecto-AK presented an absolute requirement for magnesium and adenine-based nucleotides. UMP, GMP, and CMP could not substitute for AMP as gamma-phosphate acceptor, and UDP could not replace ADP. Apparent K(m) and V(max) values were 23 +/- 5 microM and 1.1 +/- 0.1 nmol x min(-1) x cm(-2) for ATP and 43 +/- 6 microM and 0.5 +/- 0.1 nmol x min(-1) x cm(-2) for ADP. Ecto-AK accounted for 20% of [gamma-(32)P]ATP dephosphorylation, and the impermeant AK inhibitor, diadenosine pentaphosphate, reduced ADPase activity by more than 70% on both epithelial surfaces. Time course experiments on ATP metabolism demonstrated that ecto-AK significantly prolongs effective ATP and ADP concentrations on airway epithelial surfaces for P2 receptor signaling and reduces by 6-fold adenosine production. Our data suggest a role for this nucleotide entrapment cycle in the propagation of purine-mediated mucociliary clearance on human airway epithelial surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号