首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
1. Single chorda tympani fibres sensitive to monosodium L-glutamate (MSG), elicit a unique taste in humans and gave a greater response to NaCl and/or sucrose than to MSG whereas several MSG-sensitive glossopharyngeal fibres responded only slightly if at all to NaCl and sucrose. 2. The across-fibre correlations showed that MSG and NaCl produced similar response patterns in the chorda tympani fibres but different response patterns in the glossopharyngeal fibres. 3. These results suggest that taste information of glossopharyngeal fibres plays a relatively more important role in the qualitative discrimination between MSG and the four basic taste substances than that of chorda tympani fibres.  相似文献   

2.

Background

The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear.

Methodology/Principal Findings

We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25–45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells) were also reduced by 25–45% by elimination of PKD2L1.

Conclusions/Significance

These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.  相似文献   

3.
Effects of tetrodotoxin (TTX) on neural responses of the chorda tympani to four basic taste stimuli were investigated electrophysiologically in rats. When the TTX (10 mg/ml) was applied directly to the tongue surface for 3 minutes, magnitude of the integrated responses of the chorda tympani was diminished to about 60% of that of the control response. This diminution of response was recovered within 30 minutes by degrees and the effect of the TTX was antagonized by guanylate. This result gives a suggestion that guanidyl group in the TTX may play an important role for the inhibitory actions to the responses of the chorda tympani. On the other hand, when the TTX (0.25 mg/100 g b. wt.) was applied intravenously, magnitude of the responses of the chorda tympani to four basic taste stimuli decreased gradually to 20 approximately 30% of that of the control responses within 60 minutes and did not recover more than 10 hours. This is assumed due to the blocking of the sodium pump of nerve fibers in the chorda tympani by the TTX.  相似文献   

4.
Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.  相似文献   

5.
1. Behavioural studies using the conditioned taste aversion (CTA) paradigm in mice showed that aversion conditioned to monosodium L-glutamate (MSG), which elicits a unique taste in humans, did not strongly generalize to any of the four basic taste stimuli, suggesting that mice could behaviourally discriminate between MSG and the four basic taste stimuli. 2. Denervation of bilateral glossopharyngeal nerve significantly increased behavioural similarities (the strength of generalization in the CTA paradigm) between MSG and sodium salts. This was not the case after destruction of the bilateral chorda tympani nerve. 3. These results suggest that taste information of glossopharyngeal nerve plays a more important role in the behavioural discrimination between MSG and the four basic tastes than does that of the chorda tympani nerve.  相似文献   

6.
Effects of chorda tympani nerve anesthesia on taste responses in the NST   总被引:1,自引:0,他引:1  
Dinkins  ME; Travers  SP 《Chemical senses》1998,23(6):661-673
Human clinical and psychophysical observations suggest that the taste system is able to compensate for losses in peripheral nerve input, since patients do not commonly report decrements in whole mouth taste following chorda tympani nerve damage or anesthesia. Indeed, neurophysiological data from the rat nucleus of the solitary tract (NST) suggests that a release of inhibition (disinhibition) may occur centrally following chorda tympani nerve anesthesia. Our purpose was to study this possibility further. We recorded from 59 multi- and single- unit taste-responsive sites in the rat NST before, during and after recovery from chorda tympani nerve anesthesia. During anesthesia, average anterior tongue responses were eliminated but no compensatory increases in palatal or posterior tongue responses were observed. However, six individual sites displayed increased taste responsiveness during anesthesia. The average increase was 32.9%. Therefore, disinhibition of taste responses was observed, but infrequently and to a small degree in the NST At a subset of sites, chorda tympani-mediated responses decreased while greater superficial petrosal-mediated responses remained the same during anesthesia. Since this effect was accompanied by a decrease in spontaneous activity, we propose that taste compensation may result in part by a change in signal-to-noise ratio at a subset of sites.   相似文献   

7.
Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrations. Iontophoretic presentation of Cl- and acetate to the anterior tongue elicited no response in the chorda tympani, suggesting that these anions are not directly stimulatory. Drugs (0.01, 1.0, and 100 microM anthracene-9-carboxylate, diphenylamine-2-carboxylate, 4- acetamido-4'-isothiocyanatostilbene-2,2'-disulfonate, and furosemide) that interfere with movements of Cl- across epithelial cells were ineffective in altering chorda tympani responses to 0.03 M of either NaCl or Na acetate. Anion inhibition related to movements of anions across epithelial membranes therefore seems unlikely. The chorda tympani contains a population of nerve fibers highly selective for Na+ (N fibers) and another population sensitive to Na+ as well as other salts and acids (H fibers). We found that N fibers respond similarly to NaCl and Na acetate, with spiking activity increasing with increasing stimulus concentration (0.01-1.0 M). H fibers, however, respond more strongly to NaCl than to Na acetate. Furthermore, H fibers increase spiking with increases in NaCl concentration, but generally decrease their responses to increasing concentrations of Na acetate. It appears that anion inhibition applies to taste cells innervated by H fibers but not by N fibers. Taste cells innervated by N fibers use an apical Na+ channel, whereas those innervated by H fibers may use a paracellularly mediated, basolateral site of excitation.  相似文献   

8.
1. The lingual treatment of 1% procaine for 10 min selectively suppressed responses of the rat chorda tympani nerve to anodal current applied to the tongue with NaCl in the bathing medium to about 50% of control but the drug produced no significant suppression in responses to chemical taste stimuli. 2. The magnitude of suppression of response to anodal current varied with concentration of procaine and kind of bathing medium for the current stimulation (larger in the order of NaCl greater than KCl greater than CaCl2 greater than HCl). 3. Such ion specificity in procaine suppression suggests that responses of the chorda tympani nerve to anodal current are provoked through the taste cell (not direct action on the taste nerve), and that the receptor mechanisms for anodal current are at least partly different from that for chemical taste stimuli.  相似文献   

9.
In order to clarify developmental changing of gustatory system, histological and electrophysiological experiments were performed in the rat. Histological examination on the anterior tongue innervated by chorda tympani nerve showed that the ratio of matured taste buds which possess a taste pore were only 9% of all taste buds observed at 1 week of postnatal age, and 81.3% at 3 weeks of age. Recording integrated responses from the chorda tympani nerve reveals that taste buds with a pore at 1 week of age responded to NaCl, HCl, and quinine-HCl as well as in adult rats, which suggests that these relatively young taste buds are matured functionally for these three stimuli. However, the response magnitudes for various sugars at 1 week of age were smaller compared to those in the adult rat, reached to the maximum at 3 weeks of age, then decreased gradually with age. Also, results from the experiment of cross-adaptation among different sugars, effects of pronase-E treatment of the tongue, analysis of correlation between on- and off-responses to sugars, showed that qualitative changes for sugar responses continues after 3 weeks of age. These results suggest that functional changes occur in the gustatory processing of sugars during postnatal development in the rat chorda tympani nerve.  相似文献   

10.
Restriction of dietary sodium during gestation has major effects on taste function and anatomy in the offspring. The chorda tympani nerve of offspring that are maintained on sodium-reduced chow throughout life (NaDep) has reduced neurophysiological responses to sodium and altered morphology of its terminal field in the nucleus of the solitary tract. There are many anatomical and physiological similarities between the chorda tympani nerve that innervates taste buds on the anterior tongue and the greater superficial petrosal nerve (GSP) that innervates taste buds on the palate. To determine if the GSP is similarly susceptible to the effects of dietary sodium restriction, the present study examined neurophysiological responses and the terminal field of the GSP in NaDep and control rats. Neurophysiological responses of the GSP to a variety of sodium and non-sodium stimuli did not differ between NaDep and control rats. Furthermore, the volume and shape of the GSP terminal field in the nucleus of the solitary tract did not differ between the groups. Therefore, despite the high degree of functional and anatomical correspondence between the chorda tympani nerve and the GSP, the GSP does not appear to be susceptible to the effects of lifelong dietary sodium restriction.  相似文献   

11.
The time course of structural changes in fungiform papillae was analyzed in rats that received unilateral chorda tympani nerve transection at 10 days of age. Morphological differences between intact and denervated sides of the tongue were first observed at 8 days postsection, with an increase in the number of fungiform papillae that did not have a pore. In addition, the first papilla with a filiform-like appearance was noted on the denervated side at 8 days postsectioning. By 11 days after surgery, the total number of papillae and the number of papillae with a pore were significantly lower on the transected side of the tongue as compared to the intact side. At 50 days postsection, there was an average of 70.5 fungiform papillae on the intact side and a mean of only 20.8 fungiform papillae the denervated side. Of those few remaining papillae on the cut side, an average of 13.5 papillae were categorized as filiform-like, while no filiform-like papillae occurred on the intact side. Significant reduction in taste bud volume was noted at 4 days posttransection and further decrements in taste bud volume were noted at 8 and 30 days postsection. Electron microscopy of the lingual branch of the trigeminal nerve from adult rats that received neonatal chorda tympani transection showed normal numbers of both myelinated and unmyelinated fibers. Thus, in addition to the well-characterized dependence of taste bud maintenance on the chorda tympani nerve, the present study shows an additional role of the chorda tympani nerve in papilla maintenance during early postnatal development.  相似文献   

12.
Most fungiform taste buds fail to become innervated when BDNF or NT4 is overexpressed in the basal layer of tongue epithelium. Here, we examined when and how overexpression of BDNF and NT4 disrupt innervation to fungiform papillae. Overexpression of either factor disrupted chorda tympani innervation patterns either before or during the initial innervation of fungiform papillae. NT4 and BDNF overexpression each disrupted initial innervation by producing different gustatory axon morphologies that emerge at distinct times (E12.5 and E14.5, respectively). Chorda tympani nerve branching was reduced in NT4 overexpressing mice, and neuronal fibers in these mice were fasciculated and remained below the epithelial surface, as if repelled by NT4 overexpression. In contrast, many chorda tympani nerve branches were observed near the epithelial surface in mice overexpressing BDNF, and most were attracted to and invaded non-taste filiform papillae instead of gustatory papillae. These results suggest that BDNF, but not NT4, normally functions as a chemoattractant that allows chorda tympani fibers to distinguish their fungiform papillae targets from non-gustatory epithelium. Since BDNF and NT4 both signal through the p75 and TrkB receptors, trophin-specific activation of different internal signaling pathways must regulate the development of the distinct gustatory axon morphologies in neurotrophin-overexpressing mice.  相似文献   

13.
Chorda tympani nerve transection (CTX) results in morphological changes to fungiform papillae and associated taste buds. When transection occurs during neonatal development in the rat, the effects on fungiform taste bud and papillae structure are markedly more severe than observed following a comparable surgery in the adult rat. The present study examined the potential "sensitive period" for morphological modifications to tongue epithelium following CTX. Rats received unilateral transection at 65, 30, 25, 20, 15, 10, or 5 days of age. With each descending age at the time of transection, the effects on the structural integrity of fungiform papillae were more severe. Significant losses in total number of taste buds and filiform-like papillae were observed when transection occurred 5-30 days of age. Significant reduction in the number of taste pores was indicated at every age of transection. Another group of rats received chorda tympani transection at 10, 25, or 65 days of age to determine if the time course of taste bud degeneration differed depending on the age of the rat at the time of transection. Taste bud volumes differed significantly from intact sides of the tongue at 2, 8, and 50 days post-transection after CTX at 65 days of age. Volume measurements did not differ 2 days post-transection after CTX at 10 or 25 days of age, but were significantly reduced at the other time points. Findings demonstrate a transitional period throughout development wherein fungiform papillae are highly dependent upon the chorda tympani for maintenance of morphological integrity.  相似文献   

14.
1. Treatment of a beta-agonist, isoproterenol, for 5 days reduced chorda tympani responses to sucrose by about 40% of the control without affecting responses to other taste stimuli, such as NaCl, HCl and quinine HCl, in balb CrSlc mice whereas such reduction of sucrose responses was not observed in C57BL/6-CrSlc and C3H/HeSlc mice, although in the latter two strains long-lasting off-responses to quinine HCl appeared after the treatment. 2. In BALB mice, the magnitude of reduction of sucrose responses by isoproterenol increased with prolonging the treatment from 1 to 5 days, although it reached almost its maximum level by the 3 days treatment. 3. BALB mice with the removal of the submandibular glands showed slightly greater control responses of the chorda tympani nerve to sucrose than BALB mice with the sham-operation or the removal of the sublingual glands, and showed no significant reduction of sucrose responses by isoproterenol treatment. 4. These results suggest that isoproterenol probably did not act directly on sweetener receptors of taste cell membranes but affect them through the submandibular salivary system.  相似文献   

15.
We tested whether the recovered ability of rats to discriminate NaCl from KCl after chorda tympani nerve transection (CTX) is causally linked to nerve regeneration or some other compensatory process. Rats were presurgically trained in an operant NaCl vs. KCl discrimination task. Rats with regenerated nerves, histologically confirmed by anterior tongue taste pore counts and tested 62 days after CTX (CTX-62R; n = 5), performed as well as those tested 62 days after sham surgery (Sham-62; n = 5), but both of these groups initially performed slightly worse than animals tested 7 days after sham surgery (Sham-7; n = 4). Performance of rats tested either 7 (CTX-7P; n = 5) or 62 (CTX-62P; n = 4) days after CTX in which nerve regeneration was prevented was severely disrupted. Adulteration of the stimuli with amiloride, an epithelial sodium channel blocker, impaired discrimination performance in a similar dose-dependent manner in the Sham-7 (n = 2), Sham-62 (n = 5), and CTX-62R (n = 5) groups, suggesting that the functional status of the amiloride-sensitive transduction pathway returns to normal in rats with regenerated chorda tympani nerves. Performance of CTX rats without regenerated nerves (CTX-7P, n = 2; CTX-62P, n = 4) was further degraded by amiloride treatment, suggesting that taste receptors innervated by other nerves are sensitive to amiloride. In conclusion, nerve regeneration is an essential component underlying full recovery of salt discrimination function after CTX.  相似文献   

16.
There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar-activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na-preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans.  相似文献   

17.
Taste responses of the gerbil IXth nerve   总被引:1,自引:1,他引:0  
Summated taste responses to 12 taste solutions were recordedfrom the IXth (glossopharyngeal) nerve of 38 Mongolian gerbils(Meriones unguiculatus). 0.3 M NH4Cl was the most effectivestimulant. The relative magnitude of the peak summated responsewas a positively accelerated function of log molar concentration.Absolute thresholds were determined for three chemicals: 0.002M NaCl, 0.0003 M HCl, and 0.002 M sucrose. The relative magnitudesof the responses to quinine, NH4Cl, and KCl were greater forthe IXth nerve than for the chorda tympani nerve, whereas NaClwas more effective for the chorda tympani. A similar patternis seen in the rat. Acetic and citric acid may bind to commonreceptor sites. NH4Cl, KCl, and HCl may also have receptor sitesin common.  相似文献   

18.
In long-term two-bottle tests, mice from the C57BL/6ByJ (B6) strain drink more monosodium L-glutamate (MSG) and inosine-5'-monophosphate (IMP) compared with mice from the 129P3/J (129) strain. The goal of this study was to assess the role of afferent gustatory input in these strain differences. We measured integrated responses of the mouse chorda tympani and glossopharyngeal nerves to lingual application of compounds that evoke umami taste in humans: MSG, monoammonium L-glutamate (NH(4) glutamate), IMP and guanosine-5'-monophosphate (GMP) and also to other taste stimuli. Chorda tympani responses to MSG and NH(4) glutamate were similar in B6 and 129 mice. Chorda tympani responses to IMP and GMP were lower in B6 than in 129 mice. Responses to umami stimuli in the glossopharyngeal nerve did not differ between the B6 and 129 strains. Responses to MSG, IMP and GMP were not affected by sodium present in these compounds because B6 and 129 mice had similar neural taste responses to NaCl. This study has demonstrated that the increased ingestive responses to the umami stimuli in B6 mice are accompanied by either unchanged or decreased neural responses to these stimuli. Lack of support for the role of the chorda tympani or glossopharyngeal nerves in the enhanced consumption of MSG and IMP by B6 mice suggests that it is due to some other factors. Although results of our previous study suggest that postingestive effects of MSG can affect its intake, contribution of other gustatory components (e.g. greater superficial petrosal nerve or central gustatory processing) to the strain differences in consumption of umami compounds also cannot be excluded. Strain differences in gustatory neural responses to nucleotides but not glutamate suggest that these compounds may activate distinct taste transduction mechanisms.  相似文献   

19.
Summary The effects of lingual treatment with amiloride, an inhibitor of salt taste responses in several mammalian species, on NaCl responses of the chorda tympani nerve were compared between four inbred strains of mouse (BALB/cCrSlc, DBA/2CrSlc, C57BL/6CrSlc and C3H/HeSlc). In C57BL and C3H mice amiloride significantly suppressed responses of the chorda tympani nerve to NaCl at a concentration 0.1 M or more whereas in BALB and DBA mice the drug did not significantly affect the responses to NaCl at any concentration, suggesting a lack of the amiloride-sensitive receptor component for NaCl in the latter two strains.A two-bottle preference test demonstrated that all strains of mouse usually showed no preference for NaCl at any concentration and avoided NaCl at 0.3 M or more, although some differences were observed in that C57BL and C3H mice showed aversive responses to 0.1 and 0.15 M NaCl, whereas BALB and DBA mice were indifferent to these solutions.The results suggest that there exist prominent differences between mouse strains in the amiloride-sensitive component of their salt receptor systems. However, in mice the taste information derived from the amiloride-sensitive receptor component probably has no remarkable effect on behavioral responses to NaCl except for a possible contribution to decreasing aversion thresholds for NaCl by increasing overall taste information about NaCl.  相似文献   

20.
Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate (CvP) and foliate papillae (FoP) located in the posterior region of the tongue, although not in fungiform papillae (FuP) or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in CvP and FoP, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in CvP and FoP. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal (GL) nerve bundles in the nodose/petrosal ganglion (NPG). WGA signals were also observed in a small population of neurons in the geniculate ganglion (GG). This result demonstrates the anatomical connection between taste receptor cells (TRCs) in the FoP and the chorda tympani (CT) nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract (NST). These findings demonstrate that the approximately 10?kb 5'-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from TRCs in the posterior region of the tongue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号