首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of mast cells, the key cells of allergic inflammation, causes typical morphological changes associated with an increase in volume, that is a function of area and perimeter. The purpose of this study was to evaluate the effect of mast cell activation to degranulate, carried out by the secretagogue Compound 48/80, and of inhibition of this activation carried out by Nedocromil sodium, a mast cell stabilizing drug, on mast cell area, perimeter and shape factor by a computerized image analyzer. Mast cells were isolated and purified by peritoneal lavage of rats (purity >98%) and co-cultured with mouse 3T3 fibroblasts to which they adhere. Cultures were incubated for 10 min at 37 degrees C with culture medium alone (Enriched Medium) or Enriched Medium containing either Nedocromil (10(-4) M) or Compound 48/80 (0.3 microg/ml) or Compound 48/80 and Nedocromil (0.3 microg/ml and 10(-4) M respectively). Supernatants were then assessed for histamine release, as a marker of mast cell activation and the cell monolayers were fixed and stained with an alcoholic-acidic toluidine blue solution and examined with a computerized image analyzer connected with a light microscope. Mast cells incubated in Enriched Medium or Nedocromil possessed similar morphometric parameters. Mast cells activated with Compound 48/80 (70% histamine release) had a significant increase in area and perimeter and a decrease in shape factor in comparison to mast cells in Enriched Medium alone. Simultaneous incubation of mast cells with Compound 48/80 and Nedocromil significantly inhibited their histamine release (36% histamine release) and the increase in area and perimeter, but did not affect significantly their shape factor, in comparison with mast cells incubated with Compound 48/80 alone. These data clearly show that there is a relationship between mast cell activation, consequent histamine release and changes in cell area, perimeter and shape factor and that Nedocromil not only inhibits mast cell histamine release but also the activation induced morphometric changes in mast cells.  相似文献   

2.
Triton X-100 at concentrations preceding those which liberated histamine, produced dose-dependent inhibition of compound 48/80-induced histamine release from rat mast cells. Triton X-100 (0.00002 1/1) depleted ATP content in the mast cells and blocked compound 48/80-induced histamine release. The inhibition of compound 48/80-induced histamine release and depletion of the ATP content in the mast cells was reversed by glucose (10 mmole). It is concluded that inhibition by Triton X-100 of histamine release induced by compound 48/80 is dependent on inhibition of energy production.  相似文献   

3.
Keishi-bukuryo-gan (Gui-Zhi-Fu-Ling-Wan) (KBG) is a traditional Chinese/Japanese medical (Kampo) formulation that has been administered to patients with "Oketsu" (blood stagnation) syndrome. In the process of neuronal cell death induced by brain ischemia, excessive generation of nitric oxide (NO) free radicals is implicated in the neurotoxicity. In the present study, we examined the protective effects of KBG and its constituent medicinal plants against NO donors, sodium nitroprusside (SNP) and 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC18)-induced neuronal death in cultured rat cerebellar granule cells (CGCs). MTT assay showed cell viability to be significantly increased by the addition of KBG extract (KBGE) (100 microg/ml), Cinnamomi Cortex extract (CCE) (3, 10 and 30 microg/ml), Paeoniae Radix extract (PRE) (100 microg/ml) and Moutan Cortex extract (MCE) (10 and 30 microg/ml) compared with exposure to SNP (30 microM, 24 h) only. Also, cell viability was significantly increased by the addition of KBGE (100 and 300 microg/ml), CCE (30 and 100 microg/ml), PRE (100 and 300 microg/ml) and MCE (30 and 100 microg/ml) compared with exposure to NOC 18 (100 microM, 48 h) only. Persicae Semen extract and Hoelen extract did not protect against NO donor-induced neuronal death. These results suggest that KBG has protective effect against NO-mediated neuronal death in cultured CGCs and that it is derived from Cinnamomi Cortex, Paeoniae Radix and Moutan Cortex.  相似文献   

4.
Changes in intracellular and extracellular rat mast cell adenosine 3':5' monophosphate (cAMP) concentrations during stimulation of histamine release by 48/80 were studied. There was a rapid and progressive fall in intracellular cAMP beginning within 10 sec after the addition of 48/80. The lowest cAMP values were obtained at 10 min, with return to control levels by 30 min. The fall in cAMP was dose-related with progressive decreases in 10-min cAMP measurements as the 48/80 concentration was increased from 0.25 to 1.00 mug/ml. There was a graded increase in histamine release over the same concentration range. Attempts to demonstrate significant amounts of cAMP in the medium during 48/80 stimulation were unsuccessful, indicating that the changes in cAMP intracellularly are not due to altered cellular permeability. There was a general correlation between the ability of pharmacologic agents to sustain high intracellular levels of cAMP in the presence of 48/80, and inhibition of histamine release. Theophylline (20 mM) which increased cAMP levels 2- 3-fold prevented a detectable decrease in cAMP after 1 mug/ml 48/80 (measured at 10 min) and almost completely inhibited histamine release. Prostaglandin E1 (27 muM) also raised cAMP levels, decreased the 48/80-induced fall in cAMP (by 42%). Epinephrine increased mast cell cAMP levels, but did not prevent the subsequent 48/80-induced decrease in cAMP and did not inhibit histamine release. Carbamylcholine (1 nM), adenine (1 muM), and diazoxide (10 muM) lowered mast cell cAMP and potentiated 48/80 induced release. In view of previous studies from this laboratory indicating that 48/80 stimulates mast cell phosphodiesterase, it seems likely that the 48/80-induced fall in cAMP is due, at least in part, to increased cAMP destruction. Since agents which prevent the fall in cAMP inhibit histamine release, it is apparent that cAMP is an important part of the control mechanism of histamine secretion. On the other hand, it cannot be concluded that a decrease in cAMP alone is sufficient to produce a response since carbamylcholine, diazoxide, and adenine which lower cAMP do not alter histamine release unless 48/80 is also present.  相似文献   

5.
Because degranulation of brain mast cells activates adrenocortical secretion (41, 42), we examined whether activation of such cells increases renin and vasopressin (antidiuretic hormone: ADH) secretion. For this, we administered compound 48/80 (C48/80), which liberates histamine from mast cells, to pentobarbital-anesthetized dogs. An infusion of 37.5 microg/kg C48/80 into the cerebral third ventricle evoked increases in plasma renin activity (PRA), and in plasma epinephrine (Epi) and ADH concentrations. Ketotifen (mast cell-stabilizing drug; given orally for 1 wk before the experiment) significantly reduced the C48/80-induced increases in PRA, Epi, and ADH. Resection of the bilateral splanchnic nerves (SPX) below the diaphragm completely prevented the C48/80-induced increases in PRA and Epi, but potentiated the C48/80-induced increase in ADH and elevated the plasma Epi level before and after C48/80 challenge. No significant changes in mean arterial blood pressure, heart rate, concentrations of plasma electrolytes (Na+, K+, and Cl-), or plasma osmolality were observed after C48/80 challenge in dogs with or without SPX. Pyrilamine maleate (H1 histaminergic-receptor antagonist) significantly reduced the C48/80-induced increase in PRA when given intracerebroventricularly, but not when given intravenously. In contrast, metiamide (H2 histaminergic-receptor antagonist) given intracerebroventricularly significantly potentiated the C48/80-induced PRA increase. A small dose of histamine (5 microg/kg) administered intracerebroventricularly increased PRA twofold and ADH fourfold (vs. their basal level). These results suggest that in dogs, endogenous histamine liberated from brain mast cells may increase renin and Epi secretion (via the sympathetic outflow) and ADH secretion (via the central nervous system).  相似文献   

6.
We examined the effect of low density lipoprotein (LDL) on histamine release from purified human lung mast cells. LDL inhibited anti-IgE- induced histamine release in a dose-dependent manner, with 100 micrograms/ml LDL-protein inhibiting histamine release by 53 +/- 8% (mean +/- SEM); half-maximal inhibition occurred at 40-80 micrograms/ml. LDL also inhibited calcium ionophore A23187-induced histamine release in a dose-dependent manner, with 1 mg/ml of LDL inhibiting histamine release by 83 +/- 9%; half maximal inhibition occurred at 220-280 micrograms/ml. Inhibition by LDL was time-dependent: half-maximal inhibition of anti-IgE- induced histamine release by LDL occurred at 30-50 minutes of incubation. The inhibitory effect of LDL was independent of buffer calcium concentrations (0-5 mM) or temperature (0-37 degrees C). These data are consistent with a newly defined immunoregulatory role for LDL.  相似文献   

7.
Phenothiazines (chlorpromazine and promethazine) and antihistaminic quinuclidine derivatives [phencarol, quinuclidyl-3-di-(o-tolyl) carbinol, hydrochloride quinuclidyl-3-di-(o-methoxyphenyl) carbinol--HQMC] at concentrations preceding the histamine-releasing ones inhibited the compound 48/80-induced histamine release from the isolated rat mast cells. HQMC inhibited histamine release induced by selective liberators (compound 48/80, MCD-peptide, specific antigen), but potentiated histamine release induced by nonselective liberators (chlorpromazine, tryton X-100). The inhibition by HQMC of histamine release induced by compound 48/80 increased during 1 min and was reversible. The inhibitory effect of all the compounds tested was partially counteracted by glucose.  相似文献   

8.
In this study, we investigated the effect of Amomum xanthiodes (Zingiberaceae) extract (AXE) on the mast cell-mediated allergy model and studied the possible mechanism of action. We found that AXE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. Additionally, AXE decreased immunoglobulin E (IgE)-mediated local allergic reactions and passive cutaneous anaphylaxis (PCA), and AXE dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. The amounts of AXE needed for inhibition of compound 48/80-induced plasma histamine release and PCA were similar to disodium cromoglycate, the known anti-allergic drug. We found that AXE increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AXE attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 secretion in human mast cells. The inhibitory effect of AXE on the proinflammatory cytokines was nuclear factor-kappaB (NF-kappaB)-dependent. In addition, AXE decreased PMA plus A23187-induced degradation of IkappaBalphaand the nuclear translocation of NF-kappaB. Our findings provide evidence that AXE inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca2+, proinflammatory cytokines, and NF-kappaB are involved in these effects.  相似文献   

9.
To explore effects of Forsythia koreana methanol extract (FKME) on mast cell-mediated allergic and inflammatory properties, the effect of FKME was evaluated on compound 48/80-induced systemic anaphylaxis, ear swelling, and anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-induced passive cutaneous anaphylaxis (PCA). In addition, the effect of FKME was investigated on the histamine release from rat peritoneal mast cells (RPMCs) stimulated by compound 48/80, which promotes histamine release. The human mast cell line HMC-1 was stimulated by phorbol 12-myristate 13-acetate plus calcium ionophore A23187. Activated HMC-1 can produce several proinflammatory and chemotactic cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8. Cytokine levels in the culture supernatant were measured by an enzyme-linked immunosorbent assay. Cytotoxicity by FKME was determined by a 3-(4,5-dimethylthiazol-2-yl)-diphenyl-tetrazolium bromide (MTT) assay. FKME inhibited compound 48/80-induced systemic anaphylactic shock and ear swelling in mice. When 1 g/kg FKME was pretreated or posttreated with mice, compound 48/80-induced mice morality was 50 and 66.7%, respectively. One gram per kilogram of FKME pretreatment inhibited ear-swelling responses derived from compound 48/80 by 29.75%. A PCA reaction was inhibited by 17.9%. In an in vitro model, FKME (1 mg/ml) inhibited histamine release from the RPMCs by 13.8% and TNF-α, IL-6, and IL-8 production from HMC-1 cells by 71.16% (P < 0.001), 86.72% (P < 0.001), and 44.6%, respectively. However, FKME had no cytotoxic effects on cell viability. In conclusion, FKME inhibited not only systemic anaphylaxis and ear swelling induced by compound 48/80 but also inhibited a PCA reaction induced by anti-DNP IgE in vivo. Treatment with FKME showed significant inhibitory effects on histamine, TNF-α, IL-6, and IL-8 release from mast cells.  相似文献   

10.
11.
Pretreatment of rat peritoneal mast cells, human basophils, bone marrow-derived mouse mast cells (BMMC) and mouse mast cell line PT-18 cells with 1 microgram/ml pertussis toxin (PT) failed to inhibit immunoglobulin E (IgE)-dependent histamine release from the cells. In BMMC and PT-18 cells, even 20-hr incubation of the cells with 1 microgram/ml PT, which ADP-ribosylates more than 97% of 41 kDa, alpha-subunit of Ni in the cells, failed to affect the IgE-dependent release of histamine or arachidonate. The results indicate that GTP-binding protein, Ni, is not involved in the transduction of triggering signals induced by cross-linking of IgE receptors. In contrast, pretreatment of rat mast cells with 1 ng/ml to 0.1 microgram/ml PT for 2 hr inhibited histamine release induced by compound 48/80 in a dose-dependent manner. A similar pretreatment with PT inhibited thrombin-induced histamine release from BMMC and N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced histamine release from human basophils in a similar dose-dependent fashion. However, even 20 hr of incubation of sensitized BMMC with 1 microgram/ml PT failed to inhibit either thrombin-induced or antigen-induced breakdown of phosphatidylinositides (PI), i.e., the formation of inositol triphosphate and diacylglycerol, Quin-2 signal, and the release of arachidonic acid. The results indicate that the inhibition of thrombin-induced histamine release by PT-treatment is not due to the inhibition of PI-turnover, and that Ni is not involved in thrombin-induced or antigen-induced (IgE-dependent) hydrolysis of phosphatidylinositides in mast cells.  相似文献   

12.
T Johansen 《Life sciences》1980,27(5):369-375
The effect of magnesium and EDTA on compound 4880-induced histamine release and adenosine triphosphate (ATP) content of mast cells has been studied. Inhibition of histamine release after preincubation of the cells with or without EDTA in the absence of calcium and the reversal by calcium indicate that calcium is required for compound 4880-induced histamine release. The presence of magnesium potentiate the inhibition caused by the lack of calcium. The inhibition of histamine release is not related to changes in cellular ATP content. The observations with EDTA suggest that calcium may be provided for the release process from intracellular sources.  相似文献   

13.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

14.
The effects of tannins and related polyphenols on KO2- and compound 48/80-induced histamine release from rat peritoneal mast cells were examined. Pretreatment with hydrolyzable tannins (1-100 microM) significantly inhibited KO2-induced histamine release. Dimeric ellagitannins, which have hexahydroxydiphenoyl (HHDP) and valoneoyl residues and/or a valoneoyl-related acyl unit in the molecule, showed more potent inhibitory effects than monomeric hydrolyzable tannins. The most effective inhibition was exhibited by agrimoniin and euphorbin C (IC50 0.68 and 0.80 microM), which have dehydrodigalloyl and euphorbinoyl groups, respectively, as well as the HHDP group. However, procyanidins, flavonoids and related polyphenols with small molecular weights, except for epigallocatechin gallate, exhibited negligible effects. Although clinically used antiallergic drugs, azelastine, astemizole, ketotifen and epinastine have been shown to prevent KO2-induced histamine release, their potencies were all less than those of ellagitannins. An inhibitory effect on compound 48/80-induced histamine release was also exhibited by higher molecular weight tannins. The inhibitory effect on histamine release caused by different stimulants suggested that ellagitannins act as cell membrane stabilizers as well as radical scavengers.  相似文献   

15.
Cytotoxicity of Vibrio vulnificus cytolysin on rat peritoneal mast cells   总被引:3,自引:0,他引:3  
Histamine has been thought to be a permeability enhancing factor in Vibrio vulnificus infection. The injection of living bacteria or purified V. vulnificus cytolysin (VVC) can cause lethality in mice by inducing hemoconcentration and increased vascular permeability. In the present study, we tried to identify whether histamine release causes the increased vascular permeability that is responsible for the lethal effect of VVC. Treatment of rat peritoneal mast cells with high concentrations of VVC caused the release of whole cellular histamine and lactate dehydrogenase (LDH). At concentrations less than 10 HU/ml, histamine and LDH were not released whereas preloaded 2-deoxy-D-glucose was rapidly effluxed with the concomitant decrease in cellular ATP. VVC-treated mast cells were refractory to the stimulation of histamine secretion by Compound 48/80 but remained fully responsive to Ca2+ plus GTP-gamma-S. These results indicate that histamine can be released from mast cells only when the concentration of VVC is high enough to cause the lysis of cells. At low concentrations, VVC does not induce the release of stored histamine from damaged cells. The intravenous injection of 80 HU purified VVC to rats, which can produce the calculated blood concentration of about 3 HU/ml, caused a marked increase in pulmonary vascular permeability, hemoconcentration and death. However, no increase in blood histamine level was detected. This level of VVC in rat blood was enough to cause severe hemoconcentration and lethality but might not be enough to cause cytolysis of the mast cells and resulting histamine release.  相似文献   

16.
The effects of 4-bromo-5-(3-ethoxy-4-methoxybenzylamino)-3(2H)-pyridazinone (NZ-107) on immediate type hypersensitivity reactions in rats and guinea-pigs were studied. 1. When NZ-107, at a dose of 50 mg/kg (i.p.) or 100 mg/kg (orally), was administered to rats, 48-h homologous passive cutaneous anaphylaxis (PCA) reaction and histamine-, leukotriene C4 (LTC4)- and leukotriene D4 (LTD4)-induced skin reactions were suppressed by the agent. 2. NZ-107 (10(-6) g/ml) inhibited both LTC4- and LTD4-induced contractions of isolated rat stomach smooth muscle. 3. NZ-107 inhibited antigen-induced histamine release from rat peritoneal mast cells by 26% at a concentration of 10(-4) g/ml. 4. NZ-107, at doses of 25 and 50 mg/kg (orally), significantly inhibited guinea-pig 3-h heterologous PCA reaction. 5. NZ-107 inhibited antigen-induced histamine release from guinea-pig lung tissue by 17% and 48% at concentrations of 5 x 10(-5) and 10(-4) g/ml, respectively. 6. NZ-107, at doses of 25 and 50 mg/kg (i.p.), inhibited antigen-induced bronchoconstriction and eosinophil accumulation in the bronchoalveolar lavage fluid (BALF) of guinea-pigs. These results suggest that NZ-107 has anti-allergic action including inhibition of eosinophil accumulation in an antigen-challenged airway lesion in rats and guinea-pigs. The anti-allergic action of this agent is thought to be due to its action as a histamine and LT antagonist and its consequent inhibition of antigen-induced histamine release.  相似文献   

17.
It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells.  相似文献   

18.
Neurotensin (NT) (1 X 10(-8) - 1.5 X 10(-6) g ml-1) caused a transient, dose-dependent increase in perfusion pressure in the rat perfused hindquarter. The vasoconstrictor effect of NT was associated with a short-lived, dose-dependent release of histamine and 5-hydroxytryptamine (5-HT) in the hindquarter effluent. Compound 48/80, a classical mast cell secretagogue, also elicited a vasoconstrictor effect in, and release of histamine from, the rat hindquarter. The vasoconstrictor effect and the release of histamine and 5-HT evoked by NT were much smaller in hindquarters derived from rats pretreated with compound 48/80 for 4 days to cause mast cell depletion than in hindquarters derived from control rats. The mast cell inhibitor cromoglycate (4 mg ml-1) inhibited by about 50% the histamine releasing effect and vasoconstriction produced by the lowest concentrations of NT utilized. The histamine releasing effect of compound 48/80 was more sensitive to blockade by cromoglycate than that of NT. The steroidal antiinflammatory and antiallergic drug dexamethasone did not affect the histamine and 5-HT releasing effect of NT. The vasoconstrictor effects of NT, compound 48/80 and 5-HT were markedly reduced by the 5-HT receptor antagonist methysergide (1 X 10(-7) g ml-1). Histamine (1 X 10(-6) - 10(-4) g ml-1) evoked a decrease in perfusion pressure in hindquarters pre-exposed to noradrenaline. The results suggest the participation of mast cell 5-HT in the vasoconstrictor effect of NT in the rat perfused hindquarter.  相似文献   

19.
Shin HY  Kim JS  An NH  Park RK  Kim HM 《Life sciences》2004,74(23):2877-2887
We investigated the effect of disodium cromoglycate (DSCG) on mast cell-mediated immediate-type hypersensitivity. DSCG inhibited systemic allergic reaction induced by compound 48/80 dose-dependently. Passive cutaneous anaphylaxis was inhibited by 71.6% by oral administration of DSCG (1 g/kg). When DSCG was pretreated at concentration rang from 0.01-1000 g/kg, the serum histamine levels were reduced in a dose dependent manner. DSCG also significantly inhibited histamine release from rat peritoneal mast cell (RPMC) by compound 48/80. We confirmed that DSCG inhibited compound 48/80-induced degranulation of RPMC by alcian blue/nuclear fast red staining. In addition, DSCG showed a significant inhibitory effect on anti-dinitrophenyl IgE-mediated tumor necrosis factor-alpha production. These results indicate that DSCG inhibits mast cell-mediated immediate-type allergic reaction.  相似文献   

20.
Heparin has been shown to act as a competitive inhibitor of inositol 1,4,5-triphosphate (InsP3) receptors in various cell types. Because InsP3 is one of the second messengers involved in stimulus-secretion coupling in mast cells, it is possible that heparin may inhibit mast cell-mediated reactions. Therefore, in allergic sheep, we tested this hypothesis in two mast cell-mediated reactions induced by immunologic and nonimmunologic stimuli: immediate cutaneous reaction (ICR) and acute bronchoconstrictor response (ABR). In 12 sheep allergic to Ascaris suum antigen, the surface area of the skin wheal was determined 20 min after intradermal injection (0.05 ml) of increasing concentrations of specific antigen, compound 48/80, and histamine, without and after pretreatment with heparin (100, 300, or 1,000 U/kg i.v.). Antigen, compound 48/80, and histamine produced concentration-dependent increases in ICR. Heparin "partially" inhibited the ICR to antigen and compound 48/80 in a dose-dependent manner without modifying the ICR to histamine. The heparin preservative benzyl alcohol was ineffective. In 11 additional sheep, specific lung resistance was measured before and after inhalation challenges with antigen, compound 48/80, and histamine without and with aerosol heparin pretreatment (1,000 U/kg). Heparin blocked the antigen- and compound 48/80-induced bronchoconstriction without modifying the airway effects of histamine. In isolated human uterine mast cells, heparin inhibited the anti-immunoglobulin E- but not the calcium ionophore- (A23187) induced histamine release. These data suggest that heparin inhibits the ICR and ABR induced by stimuli that produce immunologic and nonimmunologic mast cell degranulation without attenuating the effects of histamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号