首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP (cAMP) is one of the intracellular messengers that mediate odorant signal transduction in vertebrate olfactory cilia. Therefore, the diffusion coefficient of cAMP in olfactory cilia is an important factor in the transduction of the odorous signal. We have employed the excised cilium preparation from the grass frog (Rana pipiens) to measure the cAMP diffusion coefficient. In this preparation an olfactory cilium is drawn into a patch pipette and a gigaseal is formed at the base of the cilium. Subsequently the cilium is excised, allowing bath cAMP to diffuse into the cilium and activate the cyclic nucleotide-gated channels on the plasma membrane. In order to estimate the cAMP diffusion coefficient, we analyzed the kinetics of the currents elicited by step changes in the bath cAMP concentration in the absence of cAMP hydrolysis. Under such conditions, the kinetics of the cAMP-activated currents has a simple dependence on the diffusion coefficient. From the analysis we have obtained a cAMP diffusion coefficient of 2.7 +/- 0.2. 10(-6) cm2 s-1 for frog olfactory cilia. This value is similar to the expected value in aqueous solution, suggesting that there are no significant diffusional barriers inside olfactory cilia. At cAMP concentrations higher than 5 microM, diffusion slowed considerably, suggesting the presence of buffering by immobile cAMP binding sites. A plausible physiological function of such buffering sites would be to prolong the response of the cell to strong stimuli.  相似文献   

2.
Cyclic GMP (cGMP) is the intracellular messenger mediating phototransduction in retinal rods, with its longitudinal diffusion in the rod outer segment (ROS) likely to be a factor in determining light sensitivity. From the kinetics of cGMP-activated currents in the truncated ROS of the salamander (Ambystoma tigrinum), the cGMP diffusion coefficient was previously estimated to be approximately 60 x 10(-8) cm2 s-1. On the other hand, fluorescence measurements in intact salamander ROS using 8-(fluoresceinyl)thioguanosine 3',5'-cyclic monophosphate (Fl-cGMP) led to a diffusion coefficient for this compound of 1 x 10(-8) cm2 s-1; after corrections for differences in size and in binding to cellular components between cGMP and Fl-cGMP, this gave an upper limit of 11 x 10(-8) cm2 s-1 for the cGMP diffusion coefficient. To properly compare the two sets of measurements, we have examined the diffusion of Fl-cGMP in the truncated ROS. From the kinetics of Fl-cGMP-activated currents, we have obtained a diffusion coefficient of 3 x 10(-8) cm2 s-1 for this analog; the cGMP diffusion coefficient measured from the same truncated ROSs was approximately 80 x 10(-8) cm2 s-1. Thus, a factor of 27 appears appropriate for correcting differences in size and intracellular binding between cGMP and Fl-cGMP. Application of this correction factor to the Fl-cGMP diffusion coefficient measurements by Olson and Pugh (1993) gives a cGMP diffusion coefficient of approximately 30 x 10(-8) cm2 s-1, in reasonable agreement with the value measured from the truncated ROS.  相似文献   

3.
Pulsed field gradient NMR is a convenient alternative to traditional methods for measuring diffusion of biological macromolecules. In the present study, pulsed field gradient NMR was used to study the effects of calcium binding and hydration on carp parvalbumin. Carp parvalbumin is known to undergo large changes in tertiary structure with calcium loading. The diffusion coefficient is a sensitive guide to changes in molecular shape and in the present study the large changes in tertiary structure were clearly reflected in the measured diffusion coefficient upon calcium loading. The (monomeric) calcium-loaded form had a diffusion coefficient of 1.4 x 10(-10) m(2) s(-1) at 298 K, which conforms with the structure being a nearly spherical prolate ellipsoid from X-ray studies. The calcium-free form had a significantly lower diffusion coefficient of 1.1 x 10(-10) m(2) s(-1). The simplest explanation consistent with the change in diffusion coefficient is that the parvalbumin molecules form dimers upon the removal of Ca(2+) at the protein concentration studied (1 mM).  相似文献   

4.
A high degree of binding of 5alpha-[3H]-androstenone was recorded in membrane-enriched fractions of porcine olfactory tissue. The specific (i.e. high affinity, low capacity) binding had a mean Ka approximately 2x10(8)M(-1). A Hill plot of the data showed a Hill coefficient of approximately 2, possibly suggesting co-operativity of binding, with binding constants increasing from 8x10(7) to 1.6x10(9)M(-1) with increasing substrate concentration. The level of specific binding of 5alpha-[3H]-androstenone was nearly 10-fold higher than in corresponding respiratory tissue preparations and was markedly reduced in the presence of excess (approximately 1 microM) unlabelled 5alpha-androstenone. Corresponding fractions derived from rat olfactory tissue showed only 25% of the binding recorded for the pig. After incubation of 5alpha-[3H]-androstenone with solubilised olfactory cilial tissue (porcine), gel filtration and chromatography on a typical "glycoprotein" column (Concanavalin A-Sepharose B) were performed. Specific binding was recorded only in fractions corresponding to glycoproteins with Mr of approximately 70-90 kDa. In a third series of experiments, fractions containing high concentrations of cilia, some still attached to the dendritic endings (as shown by electron microscopy) were obtained by a novel method involving stripping them off the nasal epithelium. The basal adenylate cyclase (AC) activity was very significantly (P<0.01) higher in olfactory, compared with respiratory, cilia; storage at -70 degrees C for 3 weeks greatly reduced AC activity. When fresh male and female porcine olfactory cilia preparations were incubated with 5alpha-androstenone plus GTP, AC activity was increased fourfold (P<0.01). However, responses of porcine respiratory cilia were not significant statistically, neither were changes in basal levels of AC activities in rat olfactory cilia.  相似文献   

5.
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient.  相似文献   

6.
Free diffusion coefficient of ionic calcium in cytoplasm   总被引:5,自引:0,他引:5  
The free diffusion coefficient of ionic Ca was measured in isolated samples of Myxicola axoplasm by following the migration of 45Ca. When precautions were taken to minimize the sequestration and chelation of 45Ca (i.e., using inhibitors, energy deprivation, and saturation of Ca chelation sites), a diffusion coefficient of 5.3 x 10(-6) cm2 s-1 was measured. The diffusion coefficient was not appreciably changed by lowering free calcium from 100 microM to approximately 10 microM or by increasing the diffusion time from ten to twenty minutes. In untreated cytoplasm taken directly from the giant axon of Myxicola, the migration of Ca was more complex and could not be described by a single diffusion coefficient. This result is interpreted to suggest that bulk movement of Ca-buffers may occur in untreated Myxicola axoplasm, a system that contains few microtubules.  相似文献   

7.
The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The simple two-chamber diffusion method was improved to study the diffusion properties of bacteriophage (phage) T4 through a model biofilm agarose gel membrane (AGM) embedded with dead host Escherichia coli K12 cells. The apparent diffusion coefficient (D(app) ) of phage T4 was calculated to be 2.4 × 10(-12) m(2) /s in 0.5% AGM, which was lower than the coefficient of 4.2 × 10(-12) m(2) /s in 0.5% AGM without host cells. The phage adsorption process by dead host cells slowed the apparent phage diffusion. The Langmuir adsorption equation was used to simulate phage adsorption under different multiplicity of infections (MOIs); the maximum adsorbed phage MOI was calculated to be 417 PFU/CFU, and the Langmuir adsorption constant K(L) was 6.9 × 10(-4) CFU/PFU. To evaluate the effects of phage proliferation on diffusion, a simple syringe-based biofilm model was developed. The phage was added into this homogenous biofilm model when the host cells were in an exponential growth phase, and the apparent diffusion coefficient was greatly enhanced. We concluded that D(app) of phages through biofilms could be distinctly affected by phage adsorption and proliferation, and that the idea of D(app) and these methods can be used to study diffusion properties through real biofilms.  相似文献   

9.
A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) was used in monitoring human parvovirus B19 virus-like particle (VLP) antibody complexes from acute phase and past-immunity serum samples. The Oregon Green 488-labeled VLPs gave an average diffusion coefficient of 1.7 x 10(-7) cm2 s(-1) with an apparent hydrodynamic radius of 14 nm. After incubation of the fluorescent VLPs with an acute phase serum sample, the mobility information obtained from the fluorescence intensity fluctuation by autocorrelation analysis showed an average diffusion coefficient of 1.5 x 10(-8) cm2 s(-1), corresponding to an average radius of 157 nm. In contrast, incubation of the fluorescent VLPs with a past-immunity serum sample gave an average diffusion coefficient of 3.5 x 10(-8) cm2 s(-1) and a radius of 69 nm. A control serum devoid of B19 antibodies caused a change in the diffusion coefficient from 1.7 x 10(-7) to 1.6 x 10(-7) cm2 s(-1), which is much smaller than that observed with acute phase or past-immunity sera. Thus, VLP-antibody complexes with different diffusion coefficients could be identified for the acute phase and past-immunity sera. FCS measurement of VLP-immune complexes could be useful in distinguishing between antibodies present in acute phase or past-immunity sera as well as in titration of the VLPs.  相似文献   

11.
A relatively simple method for the determination of the diffusion coefficient of a substance that has been injected into tissue is described. We illustrate this method using [3]dexamethasone injected into the subcutaneous tissue of rats. Digital autoradiography was used to measure the distribution of the [3H] dexamethasone within the subcutaneous tissue at 2.5 and 20 min after injection. Measured concentration profiles of the injection were compared to a mathematical model of drug diffusion from an injection. There was good agreement between the experimental data and the mathematical model. The diffusion coefficient found using this simple injection method was (4.01 +/- 2.01) x 10(-10) m2/s. This D value was very close to the value of D = (4.11 +/- 1.77) x 10(-10) m2/s found previously using different mathematical and experimental techniques with osmotic pumps implanted for 6, 24, and 60 h in rats (1). The simple method given here for the determination of the diffusion coefficient is general enough to be applied to other substances and tissues as well.  相似文献   

12.
Hatched sea urchin blastulae, which have primarily short 25-μm cilia except for some long 40-to 70-μm cilia at the apical tuft, were induced to form long (40- to 70-μm) cilia around most of their circumference when treated with trypsin (0.008–0.1%) or concanavalin A. Other animalizing agents did not induce the formation of long cilia when applied to the normal blastulae. The formation of long cilia by trypsin was both time and concentration dependent. The long cilia first appeared around the apical tuft after 6–8 hr in trypsin (21°C), and by 18–22 hr most of the blastula was covered with the long cilia. Length distribution studies on cilia isolated at various times showed that the percentage of long cilia increased from approximately 10% in the normal blastula to over 66% in the 22-hr trypsin-treated embryo, and indicated that the long cilia formed by the elongation of the original short cilia. Only the blastulae and gastrulae could be induced to form long cilia; the prisms and plutei could not. Once development was inhibited by the trypsin and the first long cilia appeared, the trypsin effect could not be reversed. When blastulae with long cilia were removed from the trypsin for 10 hr, the cilia remained long; when the long cilia were detached, the blastulae regenerated long cilia in the absence of trypsin. The induced long cilia moved poorly, similar to the long, apical tuft cilia of normal embryos. The formation of long cilia by trypsin treatment of sea urchin blastulae provides a model system for studying the mechanisms of ciliary length control.  相似文献   

13.
Limited rotational diffusion of DPH in human erythrocyte membranes   总被引:1,自引:0,他引:1  
The rotational diffusion of diphenylhexatriene (DPH) determines its fluorescence depolarization. Time-resolved polarization measurements were used to calculate the coefficient of diffusion of this probe in human crythrocyte ghost membranes on the basis of a diffusion theory of limited rotation. The diffusion coefficient is 5.9 × 107 sec?1 at 37°C; this was compared with the diffusion coefficient of DPH in liquid paraffin for an estimation of the microviscosity of the membrane bilayer.  相似文献   

14.
15.
The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules.  相似文献   

16.
Double-barreled O2 microelectrodes were used to study O2 diffusion and consumption in the superfused drone (Apis mellifera) retina in darkness at 22 degrees C. Po2 was measured at different sites in the bath and retinas. It was found that diffusion was essentially in one dimension and that the rate of O2 consumption (Q) was practically constant (on the macroscale) down to Po2 s less than 20 mm Hg, a situation that greatly simplified the analysis. The value obtained for Q was 18 +/- 0.7 (SEM) microliter O2/cm3 tissue . min (n = 10), and Krogh's permeation coefficient (alpha D) was 3.24 +/- 0.18 (SEM) X 10(-5) ml O1/min . atm . cm (n = 10). Calculations indicate that only a small fraction of this Q in darkness is necessary for the energy requirements of the sodium pump. the diffusion coefficient (D) in the retina was measured by abruptly cutting off diffusion from the bath and analyzing the time-course of the fall in Po2 at the surface of the tissue. The mean value of D was 1.03 +/- 0.08 (SEM) X 10(-5) cm2/s (n = 10). From alpha D and D, the solubility coefficient alpha was calculated to be 54 +/- 4.0 (SEM) microliter O2 STP/cm3 . atm (n = 10), approximately 1.8 times that for water.  相似文献   

17.
The apparent translational diffusion coefficients of four 20 base pair (bp) DNA oligonucleotides with different sequences have been measured by capillary electrophoresis, using the stopped migration method. The diffusion coefficients of the four oligomers were equal within experimental error, and averaged (120 +/- 10) x 10(-8) cm(2) s(-1) in 40 mM Tris-acetate-EDTA buffer at 25 degrees C. Since this value is nearly identical to the translational diffusion coefficient determined for a different 20-bp oligomer using other methods, the stopped migration method can accurately measure the diffusion coefficients of small DNA oligomers. The apparent diffusion coefficient of a 118-bp DNA restriction fragment was also measured by the stopped migration method. However, the observed value was approximately 25% larger than expected from other measurements, possibly because the diffusion coefficients of larger DNA molecules are somewhat dependent on the ionic strength of the solution.  相似文献   

18.
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia.?The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.  相似文献   

19.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

20.
Quenching of pyrene fluorescence by oxygen was used to determine oxygen diffusion coefficients in phospholipid dispersions and erythrocyte plasma membranes. The fluorescence intensity and lifetime of pyrene in both artificial and natural membranes decreases about 80% in the presence of 1 atm O2, while the fluorescence excitation and emission spectra and the absorption spectrum are unaltered. Assuming the oxygen partition coefficient between membrane and aqueous phase to be 4.4, the diffusion coefficients for oxygen at 37 degrees C are 1.51 X 10(-5) cm2/s in dimyristoyl lecithin vesicles, 9.32 X 10(-6) cm2/s in dipalmitoyl lecithin vesicles, and 7.27 X 10(-6) cm2/s in erythrocyte plasma membranes. The heats of activation for oxygen diffusion are low (less than 3 kcal/degree-mol). A dramatic increase in the diffusion constant occurs at the phase transition of dimyristoyl and dipalmitoyl lecithin, which may result from an increase in either the oxygen diffusion coefficient, partition coefficient, or both. The significance of the change in oxygen diffusion below and above the phase transition for biological membranes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号