首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Epigallocatechin-3-gallate (EGCG), the major green tea polyphenol, can reach the brain following oral intake and could thus act as an anti-tumoral agent targeting several key steps of brain cancer cells invasive activity. Because integrin-mediated extracellular matrix recognition is crucial during the cell adhesion processes involved in carcinogenesis, we have investigated the effects of EGCG on different cellular integrins of the pediatric brain tumor-derived medulloblastoma cell line DAOY. Using flow cytometry, we report the levels of expression of several cell surface integrins in DAOY. These include high expression of alpha2, alpha3, and beta1 integrins, as well as alphav and beta3 integrins. Moreover, we provide evidence that EGCG can antagonize DAOY cell migration specifically on collagen by increasing cell adhesive ability through specific gene and protein upregulation of the beta1 integrin subunit. Our results suggest that this naturally occurring green tea polyphenol may thus be used as a nutraceutical therapeutic agent in targeting the invasive character of medulloblastomas.  相似文献   

4.
Recently, miR-221-3p expression has been reported to be down-regulated in medulloblastoma (MB), but its functional effects remains unclear. In this study, quantitative real-time PCR (qRT-PCR) revealed significantly decreased miR-221-3p in MB cell lines. Transfection of miR-221-3p mimics reduced, or inhibitor increased cell proliferation in MB cells using MTT assay. Flow cytometry analysis indicated miR-221-3p overexpression promoted, while knockdown alleviated G0/G1 arrest and apoptosis. Luciferase reporter assay confirmed miR-221-3p directly targets the EIF5A2 gene. Moreover, restoration of EIF5A2 in the miR-221-3p-overexpressing DAOY cells significantly alleviated the suppressive effects of miR-221-3p on cell proliferation, cell cycle and apoptosis. Furthermore, miR-221-3p overexpression decreased CDK4, Cyclin D1 and Bcl-2 and increased Bad expression, which was reversed by EIF5A2 overexpression. These results uncovered the tumor suppressive role of miR-221-3p in MB cell proliferation at least in part via targeting EIF5A2, suggesting that miR-221-3p might be a potential candidate target for diagnosis and therapeutics of MB.  相似文献   

5.
Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.  相似文献   

6.
7.
8.
9.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

10.
11.
12.
Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27Kip accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27Kip at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27Kip accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.  相似文献   

13.
Medulloblastoma, the most common malignant brain tumor of childhood, is believed to derive from immature granule neuron precursors (GNPs) that normally proliferate in the external granule layer before exiting the cell cycle and migrating to their mature location in the inner granule layer. In this study, we examined the expression of D type cyclins in GNPs during cerebellar development and showed that GNPs in early development expressed only cyclin D1, whereas later GNPs expressed both cyclins D1 and D2. Coinciding with the period of cyclin D1-only expression, Ccnd1(-/-) mice showed reduced proliferation of GNPs and impaired growth of the cerebellum. Interestingly, removal of cyclin D1 was sufficient to drastically reduce the incidence of medulloblastoma in Ptch1(+/-) mice, despite the fact that these tumors showed upregulation of both cyclins D1 and D2. We showed that cyclin D1 has an earlier role in tumorigenesis: in the absence of cyclin D1, the incidence and overall volume of ;preneoplastic' lesions were significantly decreased. We propose a model that links a role of cyclin D1 in normal GNP proliferation with its early role in tumorigenesis.  相似文献   

14.
15.
The neural precursor surface marker CD133 is thought to be enriched in brain cancer stem cells and in radioresistant DAOY medulloblastoma-derived tumor cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP) expression is a hallmark of highly invasive, radioresistant, and hypoxic brain tumor cells, we sought to determine whether MT1-MMP and other MMPs could regulate the invasive phenotype of CD133(+) DAOY cells. We found that when DAOY medulloblastoma or U87 glioblastoma cells were implanted in nude mice, only those cells specifically implanted in the brain environment generated CD133(+) brain tumors. Vascular endothelial growth factor and basic fibroblast growth factor gene expression increases in correlation with CD133 expression in those tumors. When DAOY cultures were induced to generate in vitro neurosphere-like cells, gene expression of CD133, MT1-MMP, MMP-9, and MDR-1 was induced and correlated with an increase in neurosphere invasiveness. Specific small interfering RNA gene silencing of either MT1-MMP or MMP-9 reduced the capacity of the DAOY monolayers to generate neurospheres and concomitantly abrogated their invasive capacity. On the other hand, overexpression of MT1-MMP in DAOY triggered neurosphere-like formation which was further amplified when cells were cultured in neurosphere medium. Collectively, we show that both MT1-MMP and MMP-9 contribute to the invasive phenotype during CD133(+) neurosphere-like formation in medulloblastoma cells. Increases in MMP-9 may contribute to the opening of the blood-brain barrier, whereas increased MT1-MMP would promote brain tumor infiltration. Our study suggests that MMP-9 or MT1-MMP targeting may reduce the formation of brain tumor stem cells.  相似文献   

16.
17.
18.
A replication-dependent histone H2A isotype, H2ac, is upregulated in MCF-7 cells and in estrogen receptor-positive clinical breast cancer tissues. Cellular depletion of this H2A isotype leads to defective estrogen signaling, loss of cell proliferation and cell cycle arrest at G0/G1 phase. H2ac mediates regulation of estrogen receptor target genes, particularly BCL2 and c-MYC, by recruiting estrogen receptor alpha through its HAR domain and facilitating the formation of a chromatin loop between the promoter, enhancer and 3′-untranslated region of the respective genes. These findings reveal a new role for histone isotypes in the regulation of gene expression in cancer cells, and suggest that these molecules may be targeted for anti-cancer drug discovery.  相似文献   

19.
Tumor cell survival and proliferation is attributable in part to suppression of apoptotic pathways, yet the mechanisms by which cancer cells resist apoptosis are not fully understood. Many cancer cells constitutively express heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). These breakdown products may play a role in the ability of cancer cells to suppress apoptotic signals. K(+) channels also play a crucial role in apoptosis, permitting K(+) efflux which is required to initiate caspase activation. Here, we demonstrate that HO-1 is constitutively expressed in human medulloblastoma tissue, and can be induced in the medulloblastoma cell line DAOY either chemically or by hypoxia. Induction of HO-1 markedly increases the resistance of DAOY cells to oxidant-induced apoptosis. This effect was mimicked by exogenous application of the heme degradation product CO. Furthermore we demonstrate the presence of the pro-apoptotic K(+) channel, Kv2.1, in both human medulloblastoma tissue and DAOY cells. CO inhibited the voltage-gated K(+) currents in DAOY cells, and largely reversed the oxidant-induced increase in K(+) channel activity. p38 MAPK inhibition prevented the oxidant-induced increase of K(+) channel activity in DAOY cells, and enhanced their resistance to apoptosis. Our findings suggest that CO-mediated inhibition of K(+) channels represents an important mechanism by which HO-1 can increase the resistance to apoptosis of medulloblastoma cells, and support the idea that HO-1 inhibition may enhance the effectiveness of current chemo- and radiotherapies.  相似文献   

20.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition, WNT pathway mutations are associated with medulloblastoma, the most common malignant brain tumor in children. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover, mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region, whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号