首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

2.
Selection during the colonization of new habitat is critical to the process of local adaptation, but has rarely been studied. We measured the form, direction, and strength of selection on body size and date of arrival to the breeding grounds over the first three cohorts (2003–2005) of a coho salmon (Oncorhynchus kisutch) population colonizing 33 km of habitat made accessible by modification of Landsburg Diversion Dam, on the Cedar River, Washington, USA. Salmon were sampled as they bypassed the dam, parentage was assigned based on genotypes from 10 microsatellite loci, and standardized selection gradients were calculated using the number of returning adult offspring as the fitness metric. Larger fish in both sexes produced more adult offspring, and the magnitude of the effect increased in subsequent years for males, suggesting that low densities attenuated traditional size‐biased intrasexual competition. For both sexes, directional selection favoured early breeders in 2003, but stabilizing selection on breeding date was observed in 2004 and 2005. Adults that arrived, and presumably bred, early produced stream‐rearing juvenile offspring that were larger at a common date than offspring from later parents, providing a possible mechanism linking breeding date to offspring viability. Comparison to studies employing similar methodology indicated selection during colonization was strong, particularly with respect to reproductive timing. Finally, female mean reproductive success exceeded that needed for replacement in all years so the population expanded in the first generation, demonstrating that salmon can proficiently exploit vacant habitat.  相似文献   

3.
In the breeding system of Pacific salmon, females compete for oviposition territories, and males compete to fertilize eggs. The natural selection in females and sexual selection in males likely has been responsible for their elaborate breeding morphologies and the dimorphism between the sexes. We quantified direct-selection intensities during breeding on mature coho salmon (Oncorhynchus kisutch), measured for seven phenotypic characters, including three secondary sexual characters. Wild and sea-ranched hatchery coho were used to enhance the range of phenotypes over which selection could be examined. The fish were allowed to breed in experimental arenas where we could quantify components of breeding success as well as estimate overall breeding success. We found that without competition, natural selection acts only on female body size for increased egg production; there is no detectable selection on males for the phenotypic distribution we used. Under competition, the opportunity for selection increased sixfold among females. Natural selection favored female body size and caudal-peduncle (tail) depth. Increased body size meant increased egg production and access to nesting territories. The caudal peduncle, used in burst swimming and nest digging, influenced both successful egg deposition and nest survival. Increasing density increased competition among females, though it did not significantly intensify natural selection on their characters. In males, competition increased the opportunity for selection 52-fold, which was nine times greater than for females. Sexual selection favored male body size and hooked snout length, both characters directly influencing male access to spawning opportunities. Selection on male body size was also affected significantly by breeding density. The ability of large males to control access to spawning females decreased at higher densities reflecting an increase in the operational sex ratio. Further, the relative success of small males, which could sneak access to spawning females, appeared to increase as that of intermediate-sized males decreased. Such disruptive selection may be responsible for the evolution of alternative reproductive tactics in salmon.  相似文献   

4.
Although many studies examine the form of sexual selection in males, studies characterizing this selection in females remain sparse. Sexual selection on females is predicted for sex‐role‐reversed Mormon crickets, Anabrus simplex, where males are choosy of mates and nutrient‐deprived females compete for matings and nutritious nuptial gifts. We used selection analyses to describe the strength and form of sexual selection on female morphology. There was no positive linear sexual selection on the female body size traits predicted to be associated with male preferences and female competition. Instead, we detected selection for decreasing head width and mandible length, with stabilizing selection as the dominant form of nonlinear selection. Additionally, we tested the validity of a commonly used instantaneous measure of mating success by comparing selection results with those determined using cumulative mating rate. The two fitness measures yielded similar patterns of selection, supporting the common sampling method comparing mated and unmated fractions.  相似文献   

5.
Through a series of replacement experiments with the bluehead wrasse, Thalassoma bifasciatum, we have identified male morphological characteristics that appear to be under phenotypic sexual selection. We were particularly interested in whether the various sources of sexual selection (male-male competition for unoccupied mating sites, defense of mating sites against small males, and female choice of males) were (1) independently associated with different phenotypic characteristics; (2) jointly affected the same characteristic in the same way; or (3) jointly affected the same characteristic in an antagonistic fashion. We replaced the resident large, brightly colored Terminal Phase (TP) males on a reef with the same number of TP males from other reefs. When transplanted, these males contest with each other to take over mating sites. The transplanted group of males were then scored for three components of fitness: (1) the quality of the site obtained through competition with other large males; (2) the male's ability to defend arriving females from small intruding males; and (3) changes in female visits to the site once the new male takes over. The first and second components are part of intrasexual selection; the third represents intersexual selection. We measured the opportunity for selection by partitioning variance in mating success, and measured the direct effects of sexual selection by estimating the covariance between morphology and fitness components. Opportunities for selection: Because females generally remain faithful to particular mating sites, most (54%) of the explainable variation in male mating success is due to the acquisition of a particular mating territory, which is the outcome of competition among TP males. There was less variation in mating success due to shifts in site use by females and defense of females against the intrusions of smaller males, but all components were significant. Effects of selection: Success in male–male competition among TP males, estimated by the quality of the territory acquired, was positively associated with body length and the relative length of the pectoral fin. Success in territorial defense against small males was primarily related to body length, with lesser contributions from body depth and the area of a white band on the flank. Contribution to fitness through female choice of males was positively associated with white band area. In the two instances where a character was associated with two fitness components, the direction of selection was the same. While body length was positively associated with winning intrasexual contests, it was not correlated to any behavioral measures of aggression. Similarly, the white band associated with attractiveness was not correlated with any aspect of courtship or aggression. Parasite load was uncorrelated with other morphological characters, and did not appear to affect any aspect of sexual selection. There was no evidence for stabilizing selection or significant additional contributions from second-order effects to the fitness surfaces. Fitness functions calculated using cubic splines were generally linear except for body length, which appeared sigmoid in its effect on site acquisition ability; this same feature tended to plateau in its effect on site defense. Analyses of the interactions of selection gradients with reef or experiment indicated that the effect of particular male characters on estimates of fitness was generally homogeneous in both time and space.  相似文献   

6.
Lifetime reproductive success may vary considerably with birth date. I measured phenotypic selection on female birth date in a viviparous teleost fish (Embiotocidae: Micrometrus minimus) by sampling birth-date cohorts over time in Tomales Bay, California. Four episodes of selection were measured: survival from birth to first reproduction, reproductive success in the first breeding season, survival to second reproduction, and reproductive success in the second season. Birth date had a significant impact on fitness in the first two episodes. Early born females were more successful in their first breeding season than late born females (directional selection on birth date), but early born females were less likely to survive the period between birth and first reproduction, relative to females born in the middle of the season (stabilizing selection on birth date). The final two episodes of selection had no detectable effect on birth date. Because of the relationship between birth date and survival in the first year, overall selection on female birth date was stabilizing.  相似文献   

7.
The estimation of the relationship between phenotype and fitness in natural populations is constrained by the distribution of phenotypes available for selection to act on. Because selection is blind to the underlying genotype, a more variable phenotypic distribution created by using environmental effects can be used to enhance the power of a selection study. I measured selection on a population of adult damselflies (Enallagma boreale) whose phenotype had been modified by raising the larvae under various levels of food availability and density. Selection on body size (combination of skeletal and mass at emergence) and date of emergence was estimated in two consecutive episodes. The first episode was survival from emergence to sexual maturity and the second was reproductive success after attaining sexual maturity. Female survival to sexual maturity was lower, and therefore opportunity for selection greater, than males in both years. Opportunity for selection due to reproductive success was greater for males. The total opportunity for selection was greater for males one year and for females the other. Survival to sexual maturity was related to mass gain between emergence and sexual maturity. Females gained more mass and survived less well than males in both years but there was no linear relationship between size at emergence and survival for females in either year. However, females in the tails of the phenotype distribution were less likely to survive than those near the mean. In contrast, small males consistently gained more mass than large males and survived less well in one year. There was significant selection on timing of emergence in both years, but the direction of selection changed due to differences in weather; early emerging females were more successful one year and late emerging males and females the other. The number of clutches laid by females was independent of body size. Because the resources used to produce eggs are acquired after emergence and this was independent of size at emergence, female fitness did not increase with size. Small males may have had lower survival to sexual maturity but they had higher mating success than large males. Resources acquired prior to sexual maturity are essential for reproductive success and may in some species alter their success in inter- and intrasexual competition. Therefore, ignoring the mortality associated with resource acquisition will give an incomplete and potentially misleading picture of selection on the phenotype.  相似文献   

8.
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or "tail white") are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.  相似文献   

9.
Discrete alternative reproductive phenotypes are probably often due to individuals adopting alternative tactics with unequal fitnesses in conditional strategies with status-dependent selection. One tactic is believed to be favoured below a status switch point and another tactic above it, owing to different fitness functions of the tactics. Males of the European earwig are dimorphic. Macrolabic males are large (high status) and have long forceps, and brachylabic males are small (low status) with short forceps. I tested whether fitness functions, measured as mating success, of the two morphs differed with regard to forceps length and body weight. Macrolabic males with longer forceps than a competing male had higher mating success but brachylabic males benefited by being heavier than their competitor. Thus, different selection regimes were acting on the two morphs, suggesting that their fitness functions differed in relation to status. These observations and those of previous studies, showing that morph expression is environmentally determined and is associated with body size and that the morphs have unequal fitness, provide support for the hypothesis that male dimorphism in this species is a conditional strategy that has evolved under status-dependent selection. The differential investment in forceps growth that characterizes the morphs was manifested in a steeper allometric relation between forceps length and body size in macrolabic than brachylabic males. Behavioural observations showed that males of both morphs engaged in direct contests for females. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

10.
Theory predicts that the strength of male mate choice should vary depending on male quality when higher-quality males receive greater fitness benefits from being choosy. This pattern extends to differences in male body size, with larger males often having stronger pre- and post-copulatory preferences than smaller males. We sought to determine whether large males and small males differ in the strength (or direction) of their preference for large, high-fecundity females using the fruit fly, Drosophila melanogaster. We measured male courtship preferences and mating duration to show that male body size had no impact on the strength of male mate choice; all males, regardless of their size, had equally strong preferences for large females. To understand the selective pressures shaping male mate choice in males of different sizes, we also measured the fitness benefits associated with preferring large females for both large and small males. Male body size did not affect the benefits that males received: large and small males were equally successful at mating with large females, received the same direct fitness benefits from mating with large females, and showed similar competitive fertilization success with large females. These findings provide insight into why the strength of male mate choice was not affected by male body size in this system. Our study highlights the importance of evaluating the benefits and costs of male mate choice across multiple males to predict when differences in male mate choice should occur.  相似文献   

11.
We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort.  相似文献   

12.
Many phenotypic traits perform more than one function, and so can influence organismal fitness in more than one way. Sexually dimorphic traits offer an exceptional opportunity to clarify such complexity, especially if the trait involved is subject to natural as well as sexual selection, and if the sexes differ in ecology as well as reproductive behaviour. Relative tail length in sea-snakes fulfils these conditions. Our field studies on a Fijian population of yellow-lipped sea kraits ( Laticauda colubrina ) show that relative tail lengths in male sea kraits have strong consequences for individual fitness, both via natural and sexual selection. Males have much longer tails (relative to snout-vent length) than do females. Mark-recapture studies revealed a trade-off between growth and survival: males with relatively longer tails grew more slowly, but were more likely to survive, than were shorter-tailed males. A male snake's tail length relative to body length influenced not only his growth rate and probability of survival, but also his locomotor ability and mating success. Relative tail length in male sea kraits was thus under a complex combination of selective forces. These forces included directional natural selection (through effects on survival, growth and swimming speed) as well as stabilizing natural selection (males with average-length tails swam faster) and stabilizing sexual selection (males with average-length tails obtained more matings). In contrast, our study did not detect significant selection on relative tail length in females. This sex difference may reflect the fact that females use their tails primarily for swimming, whereas males also must frequently use the tail in terrestrial locomotion and in courtship as well as for swimming.  相似文献   

13.
In some species of insects males transfer a gift to females during courtship or copulation. In the dance flies these nuptial gifts vary from nutritious prey items to inedible tokens such as a leaf, stone, or silk balloon. Nuptial gifts in dance flies are presumed to increase male mating success. We examined the strength and form of sexual selection on male Rhamphomyia sulcata, an empidid in which males provide females with a nutritious prey item as a nuptial gift. We found that whereas large males carried large gifts, neither large males nor gifts were targets of sexual selection. Indeed, correlational selection analysis and nonparametric examination of the fitness surfaces revealed that small males carrying small gifts were the most successful. Males may be more maneuverable or flight efficient with small gifts, or small males with large gifts may be unable to carry both a large gift and a female in the paired descent flight. These results suggest carrying constraints may be an important factor in determining selection on nuptial gift size. The largest target of sexual selection was old males. Old males were also paired with the largest and most fecund females, highlighting the role mate quality can further contribute to selection on males. Correlational selection analysis also revealed selection for an increase in covariance between male wing length and body size, and for an increase in slope between these traits. Males who deviate away from the optimal phenotypic relationship for two tightly related morphological traits, such as tibia and wing length, may have overall reduced performance. These findings highlight the role correlational sexual selection can play in optimizing nonsexual male morphology and scaling relationships. This study questions the role of the nuptial gift in dance flies as a resource for females.  相似文献   

14.
Abstract Despite their importance in evolutionary biology, heritability and the strength of natural selection have rarely been estimated in wild populations of iteroparous species or have usually been limited to one particular event during an organism's lifetime. Using an animal-model restricted maximum likelihood and phenotypic selection models, we estimated quantitative genetic parameters and the strength of lifetime selection on parturition date and litter size at birth in a natural population of North American red squirrels, Tamiasciurus hudsonicus. Litter size at birth and parturition date had low heritabilities ( h2 = 0.15 and 0.16, respectively). We considered potential effects of temporal environmental covariances between phenotypes and fitness and of spatial environmental heterogeneity in estimates of selection. Selection favored early breeders and females that produced litter sizes close to the population average. Stabilizing selection on litter size at birth may occur because of a trade-off between number of offspring produced per litter and offspring survival or a trade-off between a female's fecundity and her future reproductive success and survival.  相似文献   

15.
Nysius huttoni White is a polygamous bug, endemic to New Zealand, and an important pest of wheat and brassicas. This bug has a female-biased sexual size dimorphism but relative to body length, males have longer antennae, suggesting that the allometric scales of antennal–body relationships may be highly selective in sexual selection. Body weight and most morphometric traits measured have no effect on mating success of either sex. Males significantly preferred mating with females having thicker abdomens, more mature eggs, and longer ovipositors. This result suggests that males may select their mates on the basis of immediate reproductive benefit: fertilizing more eggs and ensuring better survival of these eggs. Males with large genital structures have mating advantages over those with small ones, suggesting that precopulation sexual selection in this species act on male genital traits rather than body weight and nonsexual traits. Finally, females significantly preferred males with greater slopes for the antennal-body relationship for mating. The allometry in the male antennal length may be an indicator of male reproductive fitness.  相似文献   

16.
Males with enhanced traits relative to conspecifics often show increased mating and reproductive success and thus have a fitness advantage. The opportunity or potential for sexual selection is predicted to occur under these conditions. Here, we investigated proximate determinants of mating success in male copperhead snakes (Agkistrodon contortrix), a medium‐sized pitviper of North America. Specifically, we investigated the relationships of body size (snout‐vent length, body mass), body condition index, spatial metrics (total distance moved, home range size), and plasma testosterone concentration on mating success in males. The single mating season lasts from August through September. We compared a set of candidate linear mixed models and selected the best‐fitting one using the adjusted Akaike Information Criterion (AICc). The AICc‐selected model (model 2), with testosterone, body condition index, and home range size as predictor variables, showed that male mating success was positively correlated with testosterone. To our knowledge, this is the first report to show the relationship of testosterone and individual mating success in any snake species. A parallel study conducted on male fitness in A. contortrix of the same population used microsatellite markers to assign parentage of fathers (known mothers). Unlike our study, they found that snout‐vent length was positively correlated with reproductive success and that males were experiencing greater sexual selection. This relationship has been detected under natural conditions in other species of snakes. Although behavioural data are important in any mating system analysis, they should not stand alone to infer parentage, relationships or selection metrics (e.g. Bateman gradients). Long‐term sperm storage by females, female cryptic choice, and other factors contribute to the complexity of mating success of males. Accordingly, we thus conclude that estimates of reproductive success and fitness in cryptic species, such as copperheads and other snakes, require robust molecular methods to draw accurate conclusions regarding proximate and evolutionary responses. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 185–194.  相似文献   

17.
European earwigs are sexually dimorphic in forceps shape and length. Male forceps are thought to be weapons in male contests for access to females, but recent findings suggest that females choose males on the basis of their forceps length. I investigated sexual selection on forceps length and body size and the occurrence of male-male competition. When I controlled for forceps length experimentally and statistically, relatively heavy males had greater copulation success than relatively light males. When I controlled for body size, males with relatively longer forceps had no tendency for greater copulation success than males with shorter forceps. Relatively heavy males more often took over copulations from smaller males than vice versa. Male contests were important for the outcome of mate competition, as males commonly interrupted and took over copulations. My results therefore suggest that intrasexual selection is significant in competition for copulations in male earwigs, and acts on body size. This contrasts with previous findings, which have shown intersexual selection on forceps length to be important. However, both modes of sexual selection may be acting through a two-stage process, where male-male competition first determines which males have access to females, and then through female choice among available males. Morphological measurements supported the conclusion that forceps length and body size are male secondary sexual characters, as these characters had large variance and skewed distributions in males, but were normally distributed in females. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

18.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

19.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

20.
When fitness returns are sex-specific, selection should favor the facultative adjustment of offspring sex ratios. Seasonal shifts in offspring sex ratios are predicted to be particularly beneficial in short-lived, sexually dimorphic species in which hatching date is linked to adult size, which is related to fitness in a sex-specific fashion. We used four time series of hatching dates and progeny sex ratios in the brown anole (Anolis sagrei), a short-lived lizard with male-biased sexual size dimorphism, to test for such a seasonal shift in progeny sex ratio. In 2 of the 4 years, we also released hatchlings to their natural environment to test for sex-specific effects of hatching date on juvenile survival and adult size. We found that the relationship between hatching date and size the following year was significantly steeper in males than in females, and previous work has shown that adult size is more strongly tied to fitness in males than in females. Based on those results and on further evidence linking hatching date and body size to sex-specific survival and reproductive success, we predicted that sex ratios should shift from male- to female-biased as the breeding season progressed. Contrary to our prediction, we detected no clear seasonal shift in progeny sex ratio. Furthermore, although juvenile survival was correlated with hatching date, this relationship did not consistently differ between the sexes. The observation that progeny sex ratios are seasonally invariant despite several apparent links to adult fitness suggests that the evolution of a seasonal sex-ratio bias is either inherently constrained or requires a stronger selective advantage with respect to juvenile survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号