首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chang SB  Anderson LK  Sherman JD  Royer SM  Stack SM 《Genetics》2007,176(4):2131-2138
Predicting the chromosomal location of mapped markers has been difficult because linkage maps do not reveal differences in crossover frequencies along the physical structure of chromosomes. Here we combine a physical crossover map based on the distribution of recombination nodules (RNs) on Solanum lycopersicum (tomato) synaptonemal complex 1 with a molecular genetic linkage map from the interspecific hybrid S. lycopersicum x S. pennellii to predict the physical locations of 17 mapped loci on tomato pachytene chromosome 1. Except for one marker located in heterochromatin, the predicted locations agree well with the observed locations determined by fluorescence in situ hybridization. One advantage of this approach is that once the RN distribution has been determined, the chromosomal location of any mapped locus (current or future) can be predicted with a high level of confidence.  相似文献   

2.
Tomato and potato expressed sequence tag (EST) sequences contained in the solanaceae genomics network (SGN) database were screened for simple sequence repeat (SSR) motifs. A total of 609 SSRs were identified and assayed on Solanum lycopersicum LA925 (formerly Lycopersicon esculentum) and S. pennellii LA716 (formerly L. pennellii). The SSRs that did not amplify, gave multiple band products, or did not exhibit a polymorphism that could be readily detected on standard agarose gels in either of these species were eliminated. A set of 76 SSRs meeting these criteria was then placed on the S. lycopersicum (LA925) x S. pennellii (LA716) high-density map. A set of 76 selected cleaved amplified polymorphism (CAP) markers was also developed and mapped onto the same population. These 152 PCR-based anchor markers are uniformly distributed and encompass 95% of the genome with an average spacing of 10.0 cM. These PCR-based markers were further used to characterize S. pennellii introgression lines (Eshed and Zamir, Genetics 141:1147-1162, 1995) and should prove helpful in utilizing these stocks for high-resolution mapping experiments. The majority of these anchor markers also exhibit polymorphism between S. lycopersicum and two wild species commonly used as parents for mapping experiments, S. pimpinellifolium (formerly L. pimpinellifolium) and S. habrochaites (formerly L. hirsutum), indicating that they will be useful for mapping in other interspecific populations. Sixty of the mapped SSRs plus another 49 microsatellites were tested for polymorphism in seven tomato cultivars, four S. lycopersicum var. cerasiforme accessions and eight accessions of five different wild tomato species. Polymorphism information content values were highest among the wild accessions, with as many as 13 alleles detected per locus over all accessions. Most of the SSRs (90%) had accession-specific alleles, with the most unique alleles and heterozygotes usually found in accessions of self-incompatible species. The markers should be a useful resource for qualitative and quantitative trait mapping, marker-assisted selection, germplasm identification, and genetic diversity studies in tomato. The genetic map and marker information can be found on SGN (http://www.sgn.cornell.edu).  相似文献   

3.
ABSTRACT: BACKGROUND: Many beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are closely related to each other and wild species genes have been extensively used for improvement of the crop, Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S. lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to 1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Several of the markers had previously been hypothesized as carrying wild species alleles within S. lycopersicum, i.e., cryptic introgressions. RESULTS: Each marker was mapped with high confidence (e < 1 x 10-30) to a single genomic location using BLASTN against tomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high mean bootstrap support (86.8 plus or minus 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers. Hybridization and parsimony splits networks, genomic map positions of markers relative to documented introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with putatively introgressed alleles. CONCLUSION: Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome 9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of introgressed genes within crop species such as S. lycopersicum will help inform conservation and utilization of crop germplasm diversity, for example, facilitating the purging of undesirable linkage drag or the exploitation of novel, favorable alleles.  相似文献   

4.
The wild nightshades Solanum lycopersicoides and Solanum sitiens are closely affiliated with the tomatoes (Lycopersicon spp.). Intergeneric hybridization with cultivated tomato (Lycopersicon esculentum) is impeded by strong reproductive barriers including hybrid sterility and suppressed recombination. Conservation of genome structure between these nightshades and tomato was studied by construction of a genetic map from F2 S. sitiens x S. lycopersicoides and comparison with existing maps of tomato. Owing to self-incompatibility of the F1, two hybrid plants were crossed to obtain a population of 82 F2 individuals. Using 166 previously mapped RFLP markers and 5 restriction enzymes, 101 loci polymorphic in the S. sitiens x S. lycopersicoides population were identified. Analysis of linkage between the markers resulted in a map with 12 linkage groups covering 1192 cM and one unlinked marker. Recombination rates were similar to those observed in tomato; however, significant segregation distortion was observed for markers on 7 out of the 12 chromosomes. All chromosomes were colinear with the tomato map, except for chromosome 10, where a paracentric inversion on the long arm was detected. In this region, S. sitiens and S. lycopersicoides share the same chromosomal configuration previously reported for potato (S. tuberosum) and pepper (Capsicum), suggesting that of tomato is derived. The 10L inversion explains the lack of recombination detected among homeologous chromosomes of intergeneric hybrids in this region. On this basis, we recognize two principle genomes, designated L for the Lycopersicon spp., and S for S. lycopersicoides and S. sitiens, the first examples of structural differentiation between tomato and its cross-compatible wild relatives.  相似文献   

5.
Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene-derived markers. For the first time we report on the development and mapping of 83 Petunia microsatellites. The two maps retain the same marker order, but display significant differences of recombination frequencies at orthologous mapping intervals. A complex pattern of genomic rearrangements was detected with the related genome of tomato (Solanum lycopersicum), indicating that synteny between Petunia and other Solanaceae crops has been considerably disrupted. The newly developed markers will facilitate the genetic characterization of mutants and ecological studies on genetic diversity and speciation within the genus Petunia. The maps will provide a powerful tool to link genetic and genomic information and will be useful to support sequence assembly of the Petunia genome.  相似文献   

6.
The development of single nucleotide polymorphism (SNP) markers in Japanese pear (Pyrus pyrifolia Nakai) offers the opportunity to use DNA markers for marker-assisted selection in breeding programs because of their high abundance, codominant inheritance, and potential for automated high-throughput analysis. We developed a 1,536-SNP bead array without a reference genome sequence from more than 44,000 base changes on the basis of a large-scale expressed sequence tag (EST) analysis combined with 454 genome sequencing data of Japanese pear ‘Housui’. Among the 1,536 SNPs on the array, 756 SNPs were genotyped, and 609 SNP loci were mapped to linkage groups on a genetic linkage map of ‘Housui’, based on progeny of an interspecific cross between European pear (Pyrus communis L.) ‘Bartlett’ and ‘Housui’. The newly constructed genetic linkage map consists of 951 loci, comprising 609 new SNPs, 110 pear genomic simple sequence repeats (SSRs), 25 pear EST–SSRs, 127 apple SSRs, 61 pear SNPs identified by the “potential intron polymorphism” method, and 19 other loci. The map covers 22 linkage groups spanning 1341.9 cM with an average distance of 1.41 cM between markers and is anchored to reference genetic linkage maps of European pears and apples. A total of 514 contigs containing mapped SNP loci showed significant similarity to known proteins by functional annotation analysis.  相似文献   

7.
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.  相似文献   

8.
The history of tomato (Solanum lycopersicum L.) improvement includes genetic bottlenecks, wild species introgressions, and divergence into distinct market classes. This history makes tomato an excellent model to investigate the effects of selection on genome variation. A combination of linkage mapping in two F(2) populations and physical mapping with emerging genome sequence data was used to position 434 PCR-based markers including SNPs. Three-hundred-and-forty markers were used to genotype 102 tomato lines representing wild species, landraces, vintage cultivars, and contemporary (fresh market and processing) varieties. Principal component analysis confirmed genetic divergence between market classes of cultivated tomato (P <0.0001). A genome-wide survey indicated that linkage disequilibrium (LD) decays over 6-8 cM when all cultivated tomatoes, including vintage and contemporary, were considered together. Within contemporary processing varieties, LD decayed over 6-14 cM, and decay was over 3-16 cM within fresh market varieties. Significant inter-chromosomal (gametic phase) LD was detected in both fresh market and processing varieties between chromosomes 2 and 3, and 2 and 4, but in distinct chromosomal locations for each market class. Additional LD was detected between chromosomes 3 and 4, 3 and 11, and 4 and 6 in fresh market varieties and chromosomes 3 and 12 in processing varieties. These results suggest that breeding practices for market specialization in tomato have led to a genetic divergence between fresh market and processing types.  相似文献   

9.
There is growing evidence that a map of dense single-nucleotide polymorphisms (SNPs) can outperform a map of sparse microsatellites for linkage analysis. There is also argument as to whether a clustered SNP map can outperform an evenly spaced SNP map. Using Genetic Analysis Workshop 14 simulated data, we compared for linkage analysis microsatellites, SNPs, and composite markers derived from SNPs. We encoded the composite markers in a two-step approach, in which the maximum identity length contrast method was employed to allow for recombination between loci. A SNP map 2.3 times as dense as a microsatellite map (approximately 2.9 cM compared to approximately 6.7 cM apart) provided slightly less information content (approximately 0.83 compared to approximately 0.89). Most inheritance information could be extracted when the SNPs were spaced < 1 cM apart. Comparing the linkage results on using SNPs or composite markers derived from them based on both 3 cM and 0.3 cM resolution maps, we showed that the inter-SNP distance should be kept small (< 1 cM), and that for multipoint linkage analysis the original markers and the derived composite markers had similar power; but for single point linkage analysis the resulting composite markers lead to more power. Considering all factors, such as information content, flexibility of analysis method, map errors, and genotyping errors, a map of clustered SNPs can be an efficient design for a genome-wide linkage scan.  相似文献   

10.
M M Sewell  B K Sherman  D B Neale 《Genetics》1999,151(1):321-330
A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males (1983.7 cM [Kosambi mapping function (K)]) and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes n = 12 of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers approximately 1300 cM(K).  相似文献   

11.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

12.
High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome.  相似文献   

13.
We have created a genetic map of Capsicum (pepper) from an interspecific F2 population consisting of 11 large (76.2-192.3 cM) and 2 small (19.1 and 12.5 cM) linkage groups that cover a total of 1245.7 cM. Many of the markers are tomato probes that were chosen to cover the tomato genome, allowing comparison of this pepper map to the genetic map of tomato. Hybridization of all tomato-derived probes included in this study to positions throughout the pepper map suggests that no major losses have occurred during the divergence of these genomes. Comparison of the pepper and tomato genetic maps showed that 18 homeologous linkage blocks cover 98.1% of the tomato genome and 95.0% of the pepper genome. Through these maps and the potato map, we determined the number and types of rearrangements that differentiate these species and reconstructed a hypothetical progenitor genome. We conclude there have been 30 breaks as part of 5 translocations, 10 paracentric inversions, 2 pericentric inversions, and 4 disassociations or associations of genomic regions that differentiate tomato, potato, and pepper, as well as an additional reciprocal translocation, nonreciprocal translocation, and a duplication or deletion that differentiate the two pepper mapping parents.  相似文献   

14.
Common carp (Cyprinus carpio L.) is cultured worldwide and is a major contributor to the world’s aquaculture production. The common carp has a complex tetraploidized genome, which may historically experience additional whole genome duplication than most other Cyprinids. Fine maps for female and male carp were constructed using a mapping panel containing one F1 family with 190 progeny. A total of 1,025 polymorphic markers were used to construct genetic maps. For the female map, 559 microsatellite markers in 50 linkage groups cover 3,468 cM of the genome. For the male map, 383 markers in 49 linkage groups cover 1,811 cM of the genome. The consensus map was constructed by integrating the new map with two published linkage maps, containing 732 markers and spanning 3,278 cM in 50 linkage groups. The number of consensus linkage groups corresponds to the number of common carp chromosomes. A significant difference on sex recombinant rate was observed that the ratio of female and male recombination rates was 4.2:1. Comparative analysis was performed between linkage map of common carp and genome of zebrafish (Danio rerio), which revealed clear 2:1 relationship of common carp linkage groups and zebrafish chromosomes. The results provided evidence that common carp did experienced a specific whole genome duplication event comparing with most other Cyprinids. The consensus linkage map provides an important tool for genetic and genome study of common carp and facilitates genetic selection and breeding for common carp industry.  相似文献   

15.
Recent advances in technologies for high-throughout single-nucleotide polymorphism (SNP)-based genotyping have improved efficiency and cost so that it is now becoming reasonable to consider the use of SNPs for genomewide linkage analysis. However, a suitable screening set of SNPs and a corresponding linkage map have yet to be described. The SNP maps described here fill this void and provide a resource for fast genome scanning for disease genes. We have evaluated 6,297 SNPs in a diversity panel composed of European Americans, African Americans, and Asians. The markers were assessed for assay robustness, suitable allele frequencies, and informativeness of multi-SNP clusters. Individuals from 56 Centre d'Etude du Polymorphisme Humain pedigrees, with >770 potentially informative meioses altogether, were genotyped with a subset of 2,988 SNPs, for map construction. Extensive genotyping-error analysis was performed, and the resulting SNP linkage map has an average map resolution of 3.9 cM, with map positions containing either a single SNP or several tightly linked SNPs. The order of markers on this map compares favorably with several other linkage and physical maps. We compared map distances between the SNP linkage map and the interpolated SNP linkage map constructed by the deCode Genetics group. We also evaluated cM/Mb distance ratios in females and males, along each chromosome, showing broadly defined regions of increased and decreased rates of recombination. Evaluations indicate that this SNP screening set is more informative than the Marshfield Clinic's commonly used microsatellite-based screening set.  相似文献   

16.
Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/.  相似文献   

17.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

18.
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.  相似文献   

19.
The two nightshades Solanum ochranthum and S. juglandifolium show genetic and morphological similarities to the tomatoes (Solanum sect. Lycopersicon), but are isolated from them by strong reproductive barriers. Their genetic relationships to tomato and other Solanum species were investigated using comparative genetic linkage maps obtained from an interspecific F2 S. ochranthum × S. juglandifolium population. Sixty-six plants were screened using a total of 132 markers—CAPs, RFLPs and SSRs—previously mapped in tomato. Twelve linkage groups were identified, generally corresponding to the expected (syntenic) tomato chromosomes, with two exceptions. Chromosome 1 was composed of two linkage groups and chromosomes 8 and 12 were connected in one large linkage group, indicating a likely reciprocal translocation differentiating the two parental genomes. The total map length comprised 790 cM, representing a 42% reduction in recombination rate relative to the tomato reference map. Transmission ratio distortion affected one-third of the genome, with 13 putative TRD loci identified on 9 out of 12 chromosomes. Most regions were collinear with the tomato reference maps, including the long arm of chromosome 10, which is inverted relative to two other tomato-like nightshades, S. lycopersicoides and S. sitiens. The results support the status of S. ochranthum and S. juglandifolium as the nearest outgroup to the tomatoes and imply they are more closely related to cultivated tomato than predicted from crossing relationships, thus encouraging further attempts at hybridization and introgression between them.  相似文献   

20.
A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号