首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor, and antibody has been a success in recent preclinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer and provides important information on potential therapeutic targets for pancreatic cancer treatment.  相似文献   

2.
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging, and therapy monitoring of cancer and other diseases. Nonradioactive glucose analogues enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A nonradioactive fluorescent deoxyglucose analogue may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analogue, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated D-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of the Cy5.5-D-glucosamine (Cy5.5-2DG) conjugate for NIR fluorescence imaging of tumors in a preclinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and D-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 and 4 degrees C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 degrees C incubation, while they exhibit marginal uptake at 4 degrees C. The tumor cell uptake of Cy5.5-2DG cannot be blocked by the 50 mM D-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization was clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min postinjection (pi), and the highest U87MG tumor/muscle ratios of 2.81 +/- 0.10 and 3.34 +/- 0.23 were achieved 24 h pi for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micropositron emission tomography imaging study shows that [18F]FDG preferentially localizes to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h postadministration of the probe. In conclusion, the NIR fluorescent glucose analogues, Cy5.5-2DG and Cy5.5-NHS, both demonstrate tumor-targeting abilities in cell culture and living mice. More studies are warranted to further explore their application for optical tumor imaging. To develop NIR glucose analogues with the ability to target GLUTs/hexokinase, it is highly important to select NIR dyes with a reasonable molecular size.  相似文献   

3.
Pathological angiogenesis is crucial in tumor growth, invasion and metastasis. Previous studies demonstrated that the vascular endothelial growth inhibitor (VEGI), a member of the tumor necrosis factor superfamily, can be used as a potent endogenous inhibitor of tumor angiogenesis. Molecular probes containing the asparagine–glycine–arginine (NGR) sequence can specifically bind to CD13 receptor which is overexpressed on neovasculature and several tumor cells. Near-infrared fluorescence (NIRF) optical imaging for targeting tumor vasculature offers a noninvasive method for early detection of tumor angiogenesis and efficient monitoring of response to anti-tumor vasculature therapy. The aim of this study was to develop a new NIRF imaging probe on the basis of an NGR–VEGI protein for the visualization of tumor vasculature. The NGR–VEGI fusion protein was prepared from prokaryotic expression, and its function was characterized in vitro. The NGR–VEGI protein was then labeled with a Cy5.5 fluorophore to afford Cy5.5-NGR–VEGI probe. Using the NIRF imaging technique, we visualized and quantified the specific delivery of Cy5.5-NGR–VEGI protein to subcutaneous HT-1080 fibrosarcoma tumors in mouse xenografts. The Cy5.5-NGR–VEGI probe exhibited rapid HT-1080 tumor targeting, and highest tumor-to-background contrast at 8 h post-injection (pi). Tumor specificity of Cy5.5-NGR–VEGI was confirmed by effective blocking of tumor uptake in the presence of unlabeled NGR–VEGI (20 mg/kg). Ex vivo NIRF imaging further confirmed in vivo imaging findings, demonstrating that Cy5.5-NGR–VEGI displayed an excellent tumor-to-muscle ratio (18.93 ± 2.88) at 8 h pi for the non-blocking group and significantly reduced ratio (4.92 ± 0.75) for the blocking group. In conclusion, Cy5.5-NGR–VEGI provided highly sensitive, target-specific, and longitudinal imaging of HT-1080 tumors. As a novel theranostic protein, Cy5.5-NGR–VEGI has the potential to improve cancer treatment by targeting tumor vasculature.  相似文献   

4.
Designing molecules that bind to targets that become upregulated or overexpressed as normal cells become cancerous is an important strategy for both therapeutic and diagnostic drug design. We hypothesized that pancreatic ductal adenocarcinoma (PDAC) might be imaged with the inverse strategy, that is by the design of a nanoparticle-conjugate targeted to bombesin (BN) receptors present on normal acinar cells of the pancreas. Using the fluorescein hapten visualization method to assess the presence of bombesin (BN) receptors, we first demonstrated BN receptors in the normal mouse and human pancreas, but then the lack of BN binding receptors in 13 out of 13 specimens of PDAC. The BN peptide-nanoparticle conjugate, BN-CLIO(Cy5.5), was synthesized and accumulated in the mouse pancreas in receptor dependent fashion, but not in a receptor dependent fashion in other tissues, based on tissue fluorescence measurements. The BN-CLIO(Cy5.5) nanoparticle decreased the T2 of normal pancreas and enhanced the ability to visualize tumor in a model of pancreatic cancer by MRI. The use of BN-CLIO(Cy5.5) nanoparticle as a normal tissue-targeted, T2-reducing contrast agent offers a promising approach to imaging PDAC.  相似文献   

5.
Prostate-specific membrane antigen (PSMA) remains an active target for imaging and therapeutic applications for prostate cancer. Although radionuclide-based imaging is generally more sensitive and also has been deeply explored, near-infrared fluorescence imaging agents are simple to prepare and compatible with long-term storage conditions. In the present study, a near-infrared fluorescent imaging probe (Cy5.5-CTT-54.2) has been developed by chemical conjugation of Cy5.5N-hydroxysuccinimide ester (Cy5.5-NHS) with a potent PSMA inhibitor CTT-54.2 (IC(50)=144 nM). The probe displays a highly potency (IC(50)=0.55 nM) against PSMA and has demonstrated successful application for specifically labeling PSMA-positive prostate cancer cells in both two and three-dimensional cell culture conditions. These results suggest that the potent, near-infrared Cy5.5-PSMA inhibitor conjugate may be useful for the detection of prostate tumor cells by optical in vivo imaging.  相似文献   

6.
甲胎蛋白(alpha fetoprotein,AFP)是一种在胎儿发育时期高表达的蛋白质,它又是一种穿梭蛋白质,能够将营养物质输送给胚胎细胞.相似的是,在肝癌等恶性肿瘤发展时期,肿瘤细胞也高表达AFP及其受体,它们通过AFP受体摄取AFP及其运载的物质.因此,可以将AFP与抗癌药物结合,选择性攻击肿瘤细胞.AFP与药物...  相似文献   

7.
Chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are characterized by extensive fibrosis. Importantly, in PDAC, this results in poor vascularization and impaired drug delivery to the cancer cells. Therefore, the combined targeting of pancreatic tumor stroma and chemotherapy should enhance response rates, but the negative outcome of a recent phase III clinical trial for the combination of chemotherapy and hedgehog pathway inhibition suggests that other means also need to be considered. Emerging data indicate that elimination of cancer stem cells as the root of the cancer is of pivotal importance for efficient treatment of pancreatic cancer. Recently, we demonstrated in a highly relevant preclinical mouse model for primary pancreatic cancers that the combination of cancer stem cell-targeting strategies in combination with a stroma-targeting agent, such as a hedgehog pathway inhibitor and chemotherapy, results in significantly enhanced long-term and progression-free survival. In the present study, we demonstrate mechanistically that Nodal-expressing pancreatic stellate cells are an important component of the tumor stroma for creating a paracrine niche for pancreatic cancer stem cells. Secretion of the embryonic morphogens Nodal/Activin by pancreatic stellate cells promoted in vitro sphere formation and invasiveness of pancreatic cancer stem cells in an Alk4-dependent manner. These data imply that the pancreatic cancer stem cell phenotype is promoted by paracrine Nodal/Activin signaling at the tumor-stroma interface. Therefore, targeting the tumor microenvironment is not only able to improve drug delivery but, even more importantly, destroys the cancer stem cell niche and, therefore, should be an integral part of cancer stem cell-based treatment strategies.  相似文献   

8.
Exocrine pancreatic cancer is the fifth cause of cancer-related death in Europe and carries a very poor prognosis for all disease stages. To date no medical treatment has significantly increased patients' survival. One of the reasons for pancreatic cancer's chemoresistence is the complex tumor architecture: cancer cells are surrounded by a dense desmoplastic stroma that blocks drug delivery. Moreover, pancreatic cancer is characterized by a marked heterogeneity of cells, including cancer stem cells (CSCs) that act as tumor-initiating cells and hierarchically control the differentiated cancer cells. In particular, this subpopulation is resistant to classic cytotoxic therapies, and seems to be responsible for disease renewal. Hedgehog signaling (HH) is implicated in pancreatic gland development during embryogenesis and is reactivated during tumorigenesis and the maintenance of pancreatic cancer. Some studies demonstrated that the Hedgehog-secreted signaling proteins are overexpressed in both the stromal and CSCs pools, implying an abnormal activation of HH in the main compartment of pancreatic cancer. For this reason, the Hedgehog pathway could be an interesting target for clinical trials to increase drug concentration in neoplastic cells and hence deplete the stroma and directly kill tumor-initiating cells.  相似文献   

9.
In spite of advances in surgical and medical care pancreatic cancer remains a leading cause of cancer-related death in the United States. An understanding of cancer cell interactions with host cells is critical to our ability to develop effective antitumor therapeutics for pancreatic cancer. We report here a color-coded model system for imaging cancer cell interactions with host immune cells within the native pancreas. A human pancreatic cancer cell line engineered to express green fluorescent protein (GFP) in the nucleus and red fluorescent protein (DsRed2) in the cytoplasm was orthotopically implanted into the pancreas of a nude mouse. After 10-14 days red or green fluorescent splenocytes from immune-competent donors were delivered systemically to the pancreatic cancer-bearing nude mice. Animals were imaged after splenocyte delivery using high-resolution intravital imaging systems. At 1 day after iv injection red or green fluorescent spleen cells were found distributed in lung, liver, spleen and pancreas. By 4 days after cell delivery, however, the immune cells could be clearly imaged surrounding the tumor cells within the pancreas as well as collecting within lymphatic tissues such as lymph nodes and spleen. With the high-resolution intravital imaging afforded by the Olympus IV100 and OV100 systems the interactions of the dual-colored cancer cells and the red fluorescent spleen cells could be clearly imaged in this orthotopic pancreatic cancer model. This color-coded in vivo imaging technology offers a novel approach to imaging the interactions of cancer and immune cells in the tumor microenvironment (TME).  相似文献   

10.
In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.  相似文献   

11.
Lung cancer ranks among the most common malignancies, and is the leading cause of cancer-related mortality worldwide. Chemotherapy for lung cancer can be made more specific to tumor cells, and less toxic to normal tissues, through the use of ligand-mediated drug delivery systems. In this study, we investigated the targeting mechanism of the ligand-mediated drug delivery system using a peptide, SP5-2, which specifically binds to non-small cell lung cancer (NSCLC) cells. Conjugation of SP5-2 to liposomes enhanced the amount of drug delivered directly into NSCLC cells, through receptor-mediated endocytosis. Functional SP5-2 improved the therapeutic index of Lipo-Dox by enhancing therapeutic efficacy, reducing side effects, and increasing the survival rate of tumor-bearing mice in syngenic, metastatic and orthotopic animal models. Accumulation of SP5-2-conjugated liposomal doxorubicin (SP5-2-LD) in tumor tissues was 11.2-fold higher than that of free doxorubicin, and the area under the concentration-time curve (AUC0–72 hours) was increased 159.2-fold. Furthermore, the experiment of bioavailability was assessed to confirm that SP5-2 elevates the uptake of the liposomal drugs by the tumor cells in vivo. In conclusion, the use of SP5-2-conjugated liposomes enhances pharmacokinetic properties, improves efficacy and safety profiles, and allows for controlled biodistribution and drug release.  相似文献   

12.
BACKGROUND: Although nuclear transport of therapeutic genes is an essential requirement of human gene therapy, factors required for nuclear entry of DNA remain to be elucidated. Non-viral vector systems have led to numerous improvements in the efficiency of delivery of exogenous DNA into cells. However, nuclear transport of plasmid is difficult to achieve. METHODS: We examined nuclear translocation efficiency of Cy3-labeled plasmid DNA (Cy3-pDNA) delivered by the hemagglutinating virus of Japan envelope (HVJ-E) vector, Lipofectamine or microinjection. We also examined the effect of actin depolymerization on nuclear transport of Cy3-pDNA. RESULTS: Cy3-pDNA reached the nucleus, particularly in the nucleolus, in 30 min after fusion-mediated delivery using the HVJ-E vector, while the DNA was retained in the cytoplasm during the observed period after the delivery by cationic liposomes. HVJ-E treatment transiently depolymerized actin filaments, and acceleration of nucleolar entry of microinjected DNA was achieved when treated with either empty HVJ-E or cytochalasin D, an inhibitor of actin depolymerization, prior to microinjection. CONCLUSIONS: These results suggest that plasmid DNA can be transported rapidly from the cytoplasm to the nucleolus when actin filaments are depolymerized. Thus, the HVJ-E vector can accelerate the transport of DNA to the nucleolus by actin depolymerization.  相似文献   

13.
The potential of anionic liposomes for oligonucleotide delivery was explored because the requirement for a net-positive charge on transfection-competent cationic liposome-DNA complexes is ambiguous. Liposomes composed of phosphatidylglycerol and phosphatidylcholine were monodisperse and encapsulated oligonucleotides with 40-60% efficiency. Ionic strength, bilayer charge density, and oligonucleotide chemistry influenced encapsulation. To demonstrate the biological efficacy of this vector, antisense oligonucleotides to p53 delivered in anionic liposomes were tested in an in vitro model of excitotoxicity. Exposure of hippocampal neurons to glutamate increased p53 protein expression 4-fold and decreased neuronal survival to approximately 35%. Treatment with 1 microm p53 antisense oligonucleotides in anionic liposomes prevented glutamate-induced up-regulation of p53 and increased neuronal survival to approximately 75%. Encapsulated phosphorothioate p53 antisense oligonucleotides were neuroprotective at 5-10-fold lower concentrations than when unencapsulated. Replacing the anionic lipid with phosphatidylserine significantly decreased neuroprotection. p53 antisense oligonucleotides complexed with cationic liposomes were ineffective. Neuroprotection by p53 antisense oligonucleotides in anionic liposomes was comparable with that by glutamate receptor antagonists and a chemical inhibitor of p53. Anionic liposomes were also capable of delivering plasmids and inducing transgene expression in neurons. Anionic liposome-mediated internalization of Cy3-labeled oligonucleotides by neurons and several other cell lines demonstrated the universal applicability of this vector.  相似文献   

14.
15.
To identify novel targets in pancreatic cancer cells, we used high-throughput RNAi (HT-RNAi) to select genes that, when silenced, would decrease viability of pancreatic cancer cells. The HT-RNAi screen involved reverse transfecting the pancreatic cancer cell line BxPC3 with a siRNA library targeting 572 kinases. From replicate screens, approximately 32 kinases were designated as hits, of which 22 kinase targets were selected for confirmation and validation. One kinase identified as a hit from this screen was tyrosine kinase nonreceptor 1 (TNK1), a kinase previously identified as having tumor suppressor-like properties in embryonic stem cells. Silencing of TNK1 with siRNA showed reduced proliferation in a panel of pancreatic cancer cell lines. Furthermore, we showed that silencing of TNK1 led to increased apoptosis through a caspase-dependent pathway and that targeting TNK1 with siRNA can synergize with gemcitabine treatment. Despite previous reports that TNK1 affects Ras and NF-κB signaling, we did not find similar correlations with these pathways in pancreatic cancer cells. Our results suggest that TNK1 in pancreatic cancer cells does not possess the same tumor suppressor properties seen in embryonic cells but seems to be involved in growth and survival. The application of functional genomics by using HT-RNAi screens has allowed us to identify TNK1 as a growth-associated kinase in pancreatic cancer cells.  相似文献   

16.
Pancreatic cancer is an extremely aggressive malignancy with a dismal prognosis. Cancer patients and tumor-bearing mice have multiple immunoregulatory subsets including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) that may limit the effectiveness of anti-tumor immunotherapies for pancreatic cancer. It is possible that modulating these subsets will enhance anti-tumor immunity. The goal of this study was to explore depletion of immunoregulatory cells to enhance dendritic cell (DC)-based cancer immunotherapy in a murine model of pancreatic cancer. Flow cytometry results showed an increase in both Tregs and MDSC in untreated pancreatic cancer–bearing mice compared with control. Elimination of Tregs alone or in combination with DC-based vaccination had no effect on pancreatic tumor growth or survival. Gemcitabine (Gem) is a chemotherapeutic drug routinely used for the treatment for pancreatic cancer patients. Treatment with Gem led to a significant decrease in MDSC percentages in the spleens of tumor-bearing mice, but did not enhance overall survival. However, combination therapy with DC vaccination followed by Gem treatment led to a significant delay in tumor growth and improved survival in pancreatic cancer–bearing mice. Increased MDSC were measured in the peripheral blood of patients with pancreatic cancer. Treatment with Gem also led to a decrease of this population in pancreatic cancer patients, suggesting that combination therapy with DC-based cancer vaccination and Gem may lead to improved treatments for patients with pancreatic cancer.  相似文献   

17.
Chen K  Yap LP  Park R  Hui X  Wu K  Fan D  Chen X  Conti PS 《Amino acids》2012,42(4):1329-1337
Near-infrared (NIR) fluorescence optical imaging is an emerging imaging technique for studying diseases at the molecular level. Optical imaging with a NIR emitting fluorophore for targeting tumor vasculature offers a noninvasive method for early detection of tumor angiogenesis and efficient monitoring of response to anti-tumor vasculature therapy. The previous in vitro results demonstrated that the GX1 peptide, identified by phage-display technology, is a tumor vasculature endothelium-specific ligand. In this report, Cy5.5-conjugated GX1 peptide was evaluated in a subcutaneous U87MG glioblastoma xenograft model to investigate tumor-targeting efficacy. The in vitro flow cytometry results revealed dose-dependent binding of Cy5.5-GX1 peptide to U87MG glioma cells. In vivo optical imaging with the Cy5.5-GX1 probe exhibited rapid U87MG tumor targeting at 0.5 h p.i., and high tumor-to-background contrast at 4 h p.i. Tumor specificity of Cy5.5-GX1 was confirmed by effective blocking of tumor uptake in the presence of unlabeled GX1 peptide (20 mg/kg). Ex vivo imaging further confirmed in vivo imaging findings, and demonstrated that Cy5.5-GX1 has a tumor-to-muscle ratio (15.21 ± 0.84) at 24 h p.i. for the non-blocked group and significantly decreased ratio (6.95 ± 0.75) for the blocked group. In conclusion, our studies suggest that Cy5.5-GX1 is a promising molecular probe for optical imaging of tumor vasculature.  相似文献   

18.
Abstract

We review our recent work on the use of liposomes for the delivery of antiviral agents to human immunodeficiency virus type-1 (HIV-1) infected cells, and antimycobactcrial drugs to cells harboring Mycobacterium avium complex or Mycobacterium tuberculosis. Soluble CD4 has been used to target liposomes to HIV-1-infected cells. Antisense oligodeoxynucleotides have been effectively delivered into HIV-1-infected macrophages using pH-sensitive liposomes. pH-sensitive liposomes with serum stability are being developed as in vivo delivery vehicles. Liposomes encapsulating an HIV-1 protease inhibitor were more effective in inhibiting virus production in infected macrophages than the free drug. Anionic liposomes were found to inhibit HIV-1 infectivity, while cationic liposomes had a differential toxicity for HIV-1-infected macrophages. Lipophilic sulfated cyclodextrins have been synthesized as novel antiviral agents. Liposome-encapsulated ciprofloxacin treatment reduced the number of viable M. avium in macrophages more than the free antibiotic. Liposome-encapsulated paromomycin and sparfloxacin were effective against M. tuberculosis inside macrophages, including multi-drug-resistant strains. Streptomycin encapsulated in liposomes and delivered intravenously or subcutaneously reduced the number of viable M. tuberculosis in infected mice and prevented mortality.  相似文献   

19.
Only a small number of promising drugs target pancreatic cancer, which is the fourth leading cause of cancer deaths with a 5-year survival of less than 5%. Our goal is to develop a new biotherapeutic agent in which a lysosomal protein (saposin C, SapC) and a phospholipid (dioleoylphosphatidylserine, DOPS) are assembled into nanovesicles (SapC-DOPS) for treating pancreatic cancer. A distinguishing feature of SapC-DOPS nanovesicles is their high affinity for phosphatidylserine (PS) rich microdomains, which are abnormally exposed on the membrane surface of human pancreatic tumor cells. To evaluate the role of external cell PS, in vitro assays were used to correlate PS exposure and the cytotoxic effect of SapC-DOPS in human tumor and nontumorigenic pancreatic cells. Next, pancreatic tumor xenografts (orthotopic and subcutaneous models) were used for tumor targeting and therapeutic efficacy studies with systemic SapC-DOPS treatment. We observed that the nanovesicles selectively killed human pancreatic cancer cells in vitro by inducing apoptotic death, whereas untransformed cells remained unaffected. This in vitro cytotoxic effect correlated to the surface exposure level of PS on the tumor cells. Using xenografts, animals treated with SapC-DOPS showed clear survival benefits and their tumors shrank or disappeared. Furthermore, using a double-tracking method in live mice, we showed that the nanovesicles were specifically targeted to orthotopically-implanted, bioluminescent pancreatic tumors. These data suggest that the acidic phospholipid PS is a biomarker for pancreatic cancer that can be effectively targeted for therapy utilizing cancer-selective SapC-DOPS nanovesicles. This study provides convincing evidence in support of developing a new therapeutic approach to pancreatic cancer.  相似文献   

20.
A novel nonhydrolyzable ether-linked acetic acid analog of vitamin E, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)-chroman-6-yloxyacetic acid (alpha-TEA) in combination with cisplatin, reduces tumor burden of A2780/cp70 (cp70) cisplatin-resistant human ovarian cancer cells xenografted into immune compromised nude mice. Two xenograft studies were conducted using cp70 cells stably expressing green fluorescent protein (cp70-GFP) subcutaneously transplanted into NU/NU mice. For studies 1 and 2, alpha-TEA was formulated in liposomes and delivered by aerosol such that approximately 36 microg and 72 microg of alpha-TEA were deposited in the respiratory tract of each mouse each day, respectively. Cisplatin at 5 mg/kg was administered by intraperitoneal injections once weekly for the first 3 weeks in Study 1 and on the third and 10th days following treatment initiation in Study 2. The combination alpha-TEA + cisplatin treatment reduced tumor burden and metastasis of cp70-GFP cells in comparison to control mice or mice treated with alpha-TEA or cisplatin singly. A significant reduction (P < 0.001) in growth of subcutaneous transplanted tumors was obtained with alpha-TEA + cisplatin for both studies. Visible metastases were observed in the lungs of animals from control and cisplatin-treated groups but not in animals from the alpha-TEA- or alpha-TEA + cisplatin-treated groups. The alpha-TEA + cisplatin significantly reduced the total number of lung and axillary lymph node micrometastasis (P < 0.03 and P < 0.0001, respectively). Analyses of tumor sections showed the alpha-TEA + cisplatin treatment group, in comparison to control, to have a significantly lower level of cell proliferation (Ki-67 staining; P < 0.0001) and a significantly higher level of apoptosis (terminal deoxynucleotidyl transferase-mediated nick end labeling [TUNEL]; P < 0.0001). In summary, combinations of alpha-TEA + cisplatin significantly reduced tumor burden and metastases in a xenograft model of cisplatin-resistant human ovarian cancer cells. These data show promise for combination alpha-TEA + cisplatin chemotherapy for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号