首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast translation initiation factor 3 contains five core subunits (known as TIF32, PRT1, NIP1, TIF34 and TIF35) and a less tightly associated component known as HCR1. We found that a stable subcomplex of His8-PRT1, NIP1 and TIF32 (PN2 subcomplex) could be affinity purified from a strain overexpressing these eIF3 subunits. eIF5, eIF1 and HCR1 co-purified with this subcomplex, but not with distinct His8-PRT1- TIF34-TIF35 (P45) or His8-PRT1-TIF32 (P2) sub complexes. His8-PRT1 and NIP1 did not form a stable binary subcomplex. These results provide in vivo evidence that TIF32 bridges PRT1 and NIP1, and that eIFs 1 and 5 bind to NIP1, in native eIF3. Heat-treated prt1-1 extracts are defective for Met-tRNA(i)Met binding to 40S subunits, and we also observed defective 40S binding of mRNA, eIFs 1 and 5 and eIF3 itself in these extracts. We could rescue 40S binding of Met- tRNA(i)Met and mRNA, and translation of luciferase mRNA, in a prt1-1 extract almost as well with purified PN2 subcomplex as with five-subunit eIF3, whereas the P45 subcomplex was nearly inactive. Thus, several key functions of eIF3 can be carried out by the PRT1-TIF32-NIP1 subcomplex.  相似文献   

2.
eIF3 binds to 40S ribosomal subunits and stimulates recruitment of Met-tRNAiMet and mRNA to the pre-initiation complex. Saccharomyces cerevisiae contains an ortholog of human eIF3 subunit p35, HCR1, whose interactions with yeast eIF3 are not well defined. We found that HCR1 has a dual function in translation initiation: it binds to, and stabilizes, the eIF3-eIF5- eIF1-eIF2 multifactor complex and is required for the normal level of 40S ribosomes. The RNA recognition motif (RRM) of eIF3 subunit PRT1 interacted simultaneously with HCR1 and with an internal domain of eIF3 subunit TIF32 that has sequence and functional similarity to HCR1. PRT1, HCR1 and TIF32 were also functionally linked by genetic suppressor analysis. We propose that HCR1 stabilizes or modulates interaction between TIF32 and the PRT1 RRM. Removal of the PRT1 RRM resulted in dissociation of TIF32, NIP1, HCR1 and eIF5 from eIF3 in vivo, and destroyed 40S ribosome binding by the residual PRT1-TIF34-TIF35 subcomplex. Hence, the PRT1 RRM is crucial for the integrity and ribosome-binding activity of eIF3.  相似文献   

3.
Translation initiation factor 3 (eIF3) of Saccharo myces cerevisiae forms a multifactor complex (MFC) with eIFs 1, 2, 5 and Met-tRNA(i)(Met). We previously constructed a subunit interaction model for the MFC. Here we incorporated affinity tags into the three largest eIF3 subunits (eIF3a/TIF32, eIF3b/PRT1 and eIF3c/NIP1) and deleted predicted binding domains in each tagged protein. By characterizing the mutant subcomplexes, we confirmed all key predictions of our model and uncovered new interactions of NIP1 with PRT1 and of TIF32 with eIF1. In addition to the contact between eIF2 and the N-terminal domain (NTD) of NIP1 bridged by eIF5, the C-terminal domain (CTD) of TIF32 binds eIF2 directly and is required for eIF2-eIF3 association in vivo. Overexpressing a CTD-less form of TIF32 exacerbated the initiation defect of an eIF5 mutation that weakens the NIP1-eIF5-eIF2 connection. Thus, the two independent eIF2-eIF3 contacts have additive effects on translation in vivo. Overexpressing the NIP1-NTD sequestered eIF1-eIF5-eIF2 in a defective subcomplex that derepressed GCN4 translation, providing the first in vivo evidence that association with eIF3 promotes binding of eIF2 and Met-tRNA(i)(Met) to 40S ribosomes.  相似文献   

4.
eIF3: a versatile scaffold for translation initiation complexes   总被引:1,自引:0,他引:1  
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.  相似文献   

5.
Translation initiation factor eIF3 is a multisubunit protein complex required for initiation of protein biosynthesis in eukaryotic cells. The complex promotes ribosome dissociation, the binding of the initiator methionyl-tRNA to the 40 S ribosomal subunit, and mRNA recruitment to the ribosome. In the yeast Saccharomyces cerevisiae eIF3 comprises up to 8 subunits. Using partial peptide sequences generated from proteins in purified eIF3, we cloned the TIF31 and TIF32 genes encoding 135- (p135) and 110-kDa (p110) proteins. Deletion/disruption of TIF31 results in no change in growth rate, whereas deletion of TIF32 is lethal. Depletion of p110 causes a severe reduction in cell growth and protein synthesis rates as well as runoff of ribosomes from polysomes, indicative of inhibition of the initiation phase. In addition, p110 depletion leads to p90 co-depletion, whereas other eIF3 subunit levels are not affected. Immunoprecipitation or nickel affinity chromatography from strains expressing (His)6-tagged p110 or p33 results in the co-purification of the well characterized p39 and p90 subunits of eIF3 as well as p110 and p33. This establishes p110 as an authentic subunit of eIF3. In similar experiments, p135 and other eIF3 subunits sometimes, but not always, co-purify, making assignment of p135 as an eIF3 subunit uncertain. Far Western blotting and two-hybrid analyses detect a direct interaction of p110 with p90, p135 with p33, and p33 with eIF4B. Our results, together with those from other laboratories, complete the cloning and characterization of all of the yeast eIF3 subunits.  相似文献   

6.
Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix α1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding “pocket” residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.  相似文献   

7.
Translation initiation factor eIF3 acts as the key orchestrator of the canonical initiation pathway in eukaryotes, yet its structure is greatly unexplored. We report the 2.2 Å resolution crystal structure of the complex between the yeast seven-bladed β-propeller eIF3i/TIF34 and a C-terminal α-helix of eIF3b/PRT1, which reveals universally conserved interactions. Mutating these interactions displays severe growth defects and eliminates association of eIF3i/TIF34 and strikingly also eIF3g/TIF35 with eIF3 and 40S subunits in vivo. Unexpectedly, 40S-association of the remaining eIF3 subcomplex and eIF5 is likewise destabilized resulting in formation of aberrant pre-initiation complexes (PICs) containing eIF2 and eIF1, which critically compromises scanning arrest on mRNA at its AUG start codon suggesting that the contacts between mRNA and ribosomal decoding site are impaired. Remarkably, overexpression of eIF3g/TIF35 suppresses the leaky scanning and growth defects most probably by preventing these aberrant PICs to form. Leaky scanning is also partially suppressed by eIF1, one of the key regulators of AUG recognition, and its mutant sui1G107R but the mechanism differs. We conclude that the C-terminus of eIF3b/PRT1 orchestrates co-operative recruitment of eIF3i/TIF34 and eIF3g/TIF35 to the 40S subunit for a stable and proper assembly of 48S pre-initiation complexes necessary for stringent AUG recognition on mRNAs.  相似文献   

8.
We found that mutating the RNP1 motif in the predicted RRM domain in yeast eukaryotic initiation factor 3 (eIF3) subunit b/PRT1 (prt1-rnp1) impairs its direct interactions in vitro with both eIF3a/TIF32 and eIF3j/HCR1. The rnp1 mutation in PRT1 confers temperature-sensitive translation initiation in vivo and reduces 40S-binding of eIF3 to native preinitiation complexes. Several findings indicate that the rnp1 lesion decreases recruitment of eIF3 to the 40S subunit by HCR1: (i) rnp1 strongly impairs the association of HCR1 with PRT1 without substantially disrupting the eIF3 complex; (ii) rnp1 impairs the 40S binding of eIF3 more so than the 40S binding of HCR1; (iii) overexpressing HCR1-R215I decreases the Ts(-) phenotype and increases 40S-bound eIF3 in rnp1 cells; (iv) the rnp1 Ts(-) phenotype is exacerbated by tif32-Delta6, which eliminates a binding determinant for HCR1 in TIF32; and (v) hcr1Delta impairs 40S binding of eIF3 in otherwise wild-type cells. Interestingly, rnp1 also reduces the levels of 40S-bound eIF5 and eIF1 and increases leaky scanning at the GCN4 uORF1. Thus, the PRT1 RNP1 motif coordinates the functions of HCR1 and TIF32 in 40S binding of eIF3 and is needed for optimal preinitiation complex assembly and AUG recognition in vivo.  相似文献   

9.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

10.
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.  相似文献   

11.
Mammalian eIF3 is a 700-kDa multiprotein complex essential for initiation of protein synthesis in eukaryotic cells. It consists of 13 subunits (eIF3a to -m), among which eIF3b serves as a major scaffolding protein. Here we report the solution structure of the N-terminal RNA recognition motif of human eIF3b (eIF3b-RRM) determined by NMR spectroscopy. The structure reveals a noncanonical RRM with a negatively charged surface in the beta-sheet area contradictory with potential RNA binding activity. Instead, eIF3j, which is required for stable 40 S ribosome binding of the eIF3 complex, specifically binds to the rear alpha-helices of the eIF3b-RRM, opposite to its beta-sheet surface. Moreover, we identify that an N-terminal 69-amino acid peptide of eIF3j is sufficient for binding to eIF3b-RRM and that this interaction is essential for eIF3b-RRM recruitment to the 40 S ribosomal subunit. Our results provide the first structure of an important subdomain of a core eIF3 subunit and detailed insights into protein-protein interactions between two eIF3 subunits required for stable eIF3 recruitment to the 40 S subunit.  相似文献   

12.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

13.
The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Deltahcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.  相似文献   

14.
15.
Eukaryotic translation initiation factor-3 (eIF3) is a large multisubunit complex that binds to the 40 S ribosomal subunit and promotes the binding of methionyl-tRNAi and mRNA. The molecular mechanism by which eIF3 exerts these functions is incompletely understood. We report here the cloning and characterization of TIF35, the Saccharomyces cerevisiae gene encoding the p33 subunit of eIF3. p33 is an essential protein of 30,501 Da that is required in vivo for initiation of protein synthesis. Glucose repression of TIF35 expressed from a GAL1 promoter results in depletion of both the p33 and p39 subunits. Expression of histidine-tagged p33 in yeast in combination with Ni2+ affinity chromatography allows the isolation of a complex containing the p135, p110, p90, p39, and p33 subunits of eIF3. The p33 subunit binds both mRNA and rRNA fragments due to an RNA recognition motif near its C terminus. Deletion of the C-terminal 71 amino acid residues causes loss of RNA binding, but expression of the truncated form as the sole source of p33 nevertheless supports the slow growth of yeast. These results indicate that the p33 subunit of eIF3 plays an important role in the initiation phase of protein synthesis and that its RNA-binding domain is required for optimal activity.  相似文献   

16.
Transfer of genetic information from genes into proteins is mediated by messenger RNA (mRNA) that must be first recruited to ribosomal pre-initiation complexes (PICs) by a mechanism that is still poorly understood. Recent studies showed that besides eIF4F and poly(A)-binding protein, eIF3 also plays a critical role in this process, yet the molecular mechanism of its action is unknown. We showed previously that the PCI domain of the eIF3c/NIP1 subunit of yeast eIF3 is involved in RNA binding. To assess the role of the second PCI domain of eIF3 present in eIF3a/TIF32, we performed its mutational analysis and identified a 10-Ala-substitution (Box37) that severely reduces amounts of model mRNA in the 43–48S PICs in vivo as the major, if not the only, detectable defect. Crystal structure analysis of the a/TIF32-PCI domain at 2.65-Å resolution showed that it is required for integrity of the eIF3 core and, similarly to the c/NIP1-PCI, is capable of RNA binding. The putative RNA-binding surface defined by positively charged areas contains two Box37 residues, R363 and K364. Their substitutions with alanines severely impair the mRNA recruitment step in vivo suggesting that a/TIF32-PCI represents one of the key domains ensuring stable and efficient mRNA delivery to the PICs.  相似文献   

17.
The protein encoded by the fission yeast gene, moe1(+) is the homologue of the p66/eIF3d subunit of mammalian translation initiation factor eIF3. In this study, we show that in fission yeast, Moe1 physically associates with eIF3 core subunits as well as with 40 S ribosomal particles as a constituent of the eIF3 protein complex that is similar in size to multisubunit mammalian eIF3. However, strains lacking moe1(+) (Deltamoe1) are viable and show no gross defects in translation initiation, although the rate of translation in the Deltamoe1 cells is about 30-40% slower than wild-type cells. Mutant Deltamoe1 cells are hypersensitive to caffeine and defective in spore formation. These phenotypes of Deltamoe1 cells are similar to those reported previously for deletion of the fission yeast int6(+) gene that encodes the fission yeast homologue of the p48/Int6/eIF3e subunit of mammalian eIF3. Further analysis of eIF3 subunits in Deltamoe1 or Deltaint6 cells shows that in these deletion strains, while all the eIF3 subunits are bound to 40 S particles, dissociation of ribosome-bound eIF3 results in the loss of stable association between the eIF3 subunits. In contrast, eIF3 isolated from ribosomes of wild-type cells are associated with one another in a protein complex. These observations suggest that Moe1 and spInt6 are each required for stable association of eIF3 subunits in fission yeast.  相似文献   

18.
eIF5 stimulates the GTPase activity of eIF2 bound to Met-tRNA(i)(Met), and its C-terminal domain (eIF5-CTD) bridges interaction between eIF2 and eIF3/eIF1 in a multifactor complex containing Met-tRNA(i)(Met). The tif5-7A mutation in eIF5-CTD, which destabilizes the multifactor complex in vivo, reduced the binding of Met-tRNA(i)(Met) and mRNA to 40S subunits in vitro. Interestingly, eIF5-CTD bound simultaneously to the eIF4G subunit of the cap-binding complex and the NIP1 subunit of eIF3. These interactions may enhance association of eIF4G with eIF3 to promote mRNA binding to the ribosome. In vivo, tif5-7A eliminated eIF5 as a stable component of the pre-initiation complex and led to accumulation of 48S complexes containing eIF2; thus, conversion of 48S to 80S complexes is the rate-limiting defect in this mutant. We propose that eIF5-CTD stimulates binding of Met-tRNA(i)(Met) and mRNA to 40S subunits through interactions with eIF2, eIF3 and eIF4G; however, its most important function is to anchor eIF5 to other components of the 48S complex in a manner required to couple GTP hydrolysis to AUG recognition during the scanning phase of initiation.  相似文献   

19.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

20.
Eukaryotic initiation factor-3 (eIF3) in the yeast Saccharomyces cerevisiae plays a central role in initiation of translation. The eIF3 complex contains at least eight different proteins, but, as yet, little is known about the function of the individual proteins. In this study we have characterized the role of TIF34 (eIF3-p39), a recently identified WD-40 domain-containing protein of 39 kDa, in the eIF3 complex. Using temperature-sensitive mutants of TIF34 we show that this protein is required for cell cycle progression and for mating and plays an essential role in initiation of protein synthesis. By two-hybrid screening we have identified two partners that directly associate with TIF34: PRT1, a previously characterized eIF3 subunit, and a novel protein of 33 kDa (eIF3-p33) which is part of the eIF3 complex and has an RNA binding domain. TIF34 and p33 interact with each other and overexpression of p33 complements the growth defect of a tif34-ts mutant. Our results provide support for both physical and functional interactions between three subunits, TIF34, PRT1 and p33, in the eIF3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号