首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Clostridium difficile toxin B (TcdB) inactivates the small GTPases Rho, Rac and Cdc42 during intoxication of mammalian cells. In the current work, we show that TcdB has the potential to stimulate caspase-dependent and caspase-independent apoptosis. The apoptotic pathways became evident when caspase-3-processed-vimentin was detected in TcdB-treated HeLa cells. Caspase-3 activation was subsequently confirmed in TcdB-intoxicated HeLa cells. Interestingly, caspase inhibitor delayed TcdB-induced cell death, but did not alter the time-course of cytopathic effects. A similar effect was also observed in MCF-7 cells, which are deficient in caspase-3 activity. The time-course to cell death was almost identical between cells treated with TcdB plus caspase inhibitor and cells intoxicated with the TcdB enzymatic domain (TcdB1-556). Unlike TcdB treated cells, intoxication with TcdB1-556 or expression of TcdB1-556 in a transfected cell line, did not stimulate caspase-3 activation yet cells exhibited cytopathic effects and cell death. Although TcdB1-556 treated cells did not demonstrate caspase-3 activation these cells were apoptotic as determined by differential annexin-V/propidium iodide staining and nucleosomal DNA fragmentation. These data indicate TcdB triggers caspase-independent apoptosis as a result of substrate inactivation and may evoke caspase-dependent apoptosis due to a second, yet undefined, activity of TcdB. This is the first example of a bacterial virulence factor with the potential to stimulate multiple apoptotic pathways in host cells.  相似文献   

3.
The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram-positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr-Ser45-P does not stimulate CcpA-dependent binding to DNA targets. However, fructose-1,6-biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr-Ser45-P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile.  相似文献   

4.
Targeting to mitochondria is emerging as a common strategy that bacteria utilize to interact with these central executioners of apoptosis. Several lines of evidence have in fact indicated mitochondria as specific targets for bacterial protein toxins, regarded as the principal virulence factors of pathogenic bacteria. This work shows, for the first time, the ability of the Clostridium difficile toxin B (TcdB), a glucosyltransferase that inhibits the Rho GTPases, to impact mitochondria. In living cells, TcdB provokes an early hyperpolarization of mitochondria that follows a calcium-associated signaling pathway and precedes the final execution step of apoptosis (i.e. mitochondria depolarization). Importantly, in isolated mitochondria, the toxin can induce a calcium-dependent mitochondrial swelling, accompanied by the release of the proapoptogenic factor cytochrome c. This is consistent with a mitochondrial targeting that does not require the Rho-inhibiting activity of the toxin. Of interest, the mitochondrial ATP-sensitive potassium channels are also involved in the apoptotic response to TcdB and appear to be crucial for the cell death execution phase, as demonstrated by using specific modulators of these channels. To our knowledge, the involvement of these mitochondrial channels in the ability of a bacterial toxin to control cell fate is a hitherto unreported finding.  相似文献   

5.
Epithelial cells express genes whose products signal the presence of pathogenic microorganisms to the immune system. Pathogenicity factors of enteric bacteria modulate host cell gene expression. Using microarray technology we have profiled epithelial cell gene expression upon interaction with Yersinia enterocolitica. Yersinia enterocolitica wild-type and isogenic mutant strains were used to identify host genes modulated by invasin protein (Inv), which is involved in enteroinvasion, and Yersinia outer protein P (YopP) which inhibits innate immune responses. Among 22 283 probesets (14,239 unique genes), we found 193 probesets (165 genes) to be regulated by Yersinia infection. The majority of these genes were induced by Inv, whose recognition leads to expression of NF-kappa B-regulated factors such as cytokines and adhesion molecules. Yersinia virulence plasmid (pYV)-encoded factors counter regulated Inv-induced gene expression. Thus, YopP repressed Inv-induced NF-kappa B regulated genes at 2 h post infection whereas other pYV-encoded factors repressed host cell genes at 4 and 8 h post infection. Chromosomally encoded factors of Yersinia, other than Inv, induced expression of genes known to be induced by TGF-beta receptor signalling. These genes were also repressed by pYV-encoded factors. Only a few host genes were exclusively induced by pYV-encoded factors. We hypothesize that some of these genes may contribute to pYV-mediated silencing of host cells. In conclusion, the data demonstrates that epithelial cells express a limited number of genes upon interaction with enteric Yersinia. Both Inv and YopP appear to modulate gene expression in order to subvert epithelial cell functions involved in innate immunity.  相似文献   

6.
7.
CodY, a global regulator of gene expression in low G + C Gram-positive bacteria, was found to repress toxin gene expression in Clostridium difficile. Inactivation of the codY gene resulted in derepression of all five genes of the C. difficile pathogenicity locus during exponential growth and stationary phase. CodY was found to bind with high affinity to a DNA fragment containing the promoter region of the tcdR gene, which encodes a sigma factor that permits RNA polymerase to recognize promoters of the two major toxin genes as well as its own promoter. CodY also bound, but with low affinity, to the toxin gene promoters, suggesting that the regulation of toxin gene expression by CodY occurs primarily through direct control of tcdR gene expression. Binding of CodY to the tcdR promoter region was enhanced in the presence of GTP and branched-chain amino acids, suggesting a link between nutrient limitation and the expression of C. difficile toxin genes.  相似文献   

8.
During the past decade, there has been a striking increase in Clostridium difficile nosocomial infections worldwide predominantly due to the emergence of epidemic or hypervirulent isolates, leading to an increased research focus on this bacterium. Particular interest has surrounded the two large clostridial toxins encoded by most virulent isolates, known as toxin A and toxin B. Toxin A was thought to be the major virulence factor for many years; however, it is becoming increasingly evident that toxin B plays a much more important role than anticipated. It is clear that further experiments are required to accurately determine the relative roles of each toxin in disease, especially in more clinically relevant current epidemic isolates.  相似文献   

9.
ADP-ribosylation of a protein in human fibroblasts treated with partially purified Clostridium difficile toxin B was previously reported. Here we show that the same protein was ADP-ribosylated also in human fibroblasts exposed to supernatant from a C. difficile strain producing neither toxin A nor toxin B. Furthermore, in Chinese hamster ovary and in Vero cells, showing toxin B-induced cytopathogenic effect, the protein was not significantly ADP-ribosylated. The results indicate that the ADP-ribosylation is unrelated to the cytopathogenic effect of toxin B. It appears to be caused by another unidentified factor from C. difficile, and the substrate may correspond to a protein modified endogenously in cells exposed to stressful situations. Cellular actin was not ADP-ribosylated by toxin B.  相似文献   

10.
Toxin B (TcdB) is a major pathogenic factor of Clostridum difficile. However, the mechanism by which TcdB exerts its cytotoxic action in host cells is still not completely known. Herein, we report for the first time that TcdB induced autophagic cell death in cultured human colonocytes. The induction of autophagy was demonstrated by the increased levels of LC3‐II, formation of LC3+ autophagosomes, accumulation of acidic vesicular organelles and reduced levels of the autophagic substrate p62/SQSTM1. TcdB‐induced autophagy was also accompanied by the repression of phosphoinositide 3‐kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) complex 1 activity. Functionally, pharmacological inhibition of autophagy by wortmannin or chloroquine or knockdown of autophagy‐related genes Beclin 1, Atg5 and Atg7 attenuated TcdB‐induced cell death in colonocytes. Genetic ablation of Atg5, a gene required for autophagosome formation, also mitigated the cytotoxic effect of TcdB. In conclusion, our study demonstrated that autophagy serves as a pro‐death mechanism mediating the cytotoxic action of TcdB in colonocytes. This discovery suggested that blockade of autophagy might be a novel therapeutic strategy for C. difficile infection.  相似文献   

11.
In cultured human lung fibroblasts treated with Clostridium difficile toxin B, the development of the cytopathogenic effect was inhibited by the proton ionophore monensin but was not affected by some other ionophores. The calcium channel blockers verapamil and LaCl3 protected the cells against intoxication, as did the calmodulin antagonists trifluoperazine, amitriptyline, R 24571, and dansylcadaverine. Since these agents could not prevent intoxication when added after the toxin internalization was completed, we suggest that calmodulin and uptake of extracellular calcium are needed for the internalization but not for the cytosolic action of the toxin.  相似文献   

12.
Clostridium difficile is the main cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans and animals. Its pathogenicity is primarily linked to the secretion of two exotoxins (TcdA and TcdB). Although great progress in the toxic mechanism of TcdA and TcdB has been achieved, there are many conflicting reports about the apop- totic mechanism. More importantly, apoptotic endoplasmic reticulum (ER) stress has been reported in cells treated with Shiga toxins---another kind of cytotoxins that can cause diar- rhea and colitis. Herein we checked whether TcdB can induce ER stress. The results showed that recombinant TcdB (rTcdB) activated molecular markers of unfolded protein re- sponse, suggesting that rTcdB induced ER stress in CT26 cells. However, rTcdB did not induce the up-regulation of C/EBP homologous protein (CHOP), a classic mediator of apoptotic ER stress, but it activated the precursor of cysteine aspartic acid-specific protease 12 (caspase-12), a controver- sial mediator of apoptotic ER stress. Besides, glucosyltrans- ferase activity-deficient mutant recombinant TcdB induced ER stress, though it has no cytotoxic or cytopathic effect on CT26 cells. Altogether, these data demonstrated that ER stress induced by rTcdB is glucosyltransferase-independent, indicating that ER stress induced by rTcdB is non-apoptotic. This work also offers us a new insight into the molecular mechanism of CHOP protein expression regulation and the role of CHOP expression in ER stress.  相似文献   

13.
Toxin B, an exotoxin produced by the anaerobic Gram-positive bacteria Clostridium difficile, is responsible for pseudomembranous colitis in humans. It deeply modifies morphology of cultured cells and enhances their membrane surface area, which suggests a possible alteration of membrane receptor distribution. Since toxin B and bacterial lipopolysaccharide can act synergistically on TNF-alpha production by mononuclear phagocytes, the effect of toxin B on CD14 expression was investigated using flow cytometric analysis. It was shown that monocytes overexpressed CD14 after 5 h of treatment with toxin B. In contrast, after 24 h of treatment, the percentage of CD14 monocytes decreased, although, most frequently, the remaining positive cells expressed high levels of CD14 compared with untreated cells. Macrophages treated for 5 h with toxin B overexpressed CD14, but this effect persisted for at least 24 h. Both the percentage of positive macrophages and the mean level of CD14 per cell were increased. Thus toxin B can modulate expression of CD14 and its modulation depends on the differentiation status and maybe on the activation state, since some individual variations were observed in monocyte response to toxin.  相似文献   

14.
Toxin B is a member of the family of large clostridial cytotoxins which are of great medical importance. Its catalytic fragment was crystallized in the presence of UDP-glucose and Mn2+. The structure was determined at 2.2 A resolution, showing that toxin B belongs to the glycosyltransferase type A family. However, toxin B contains as many as 309 residues in addition to the common chainfold, which most likely contribute to the target specificity. A superposition with other glycosyltransferases shows the expected positions of the acceptor oxygen atom during glucosyl transfer and indicates further that the reaction proceeds probably along a single-displacement pathway. The C1' donor carbon atom position is defined by the bound UDP and glucose. It assigns the surface area of toxin B that forms the interface to the target protein during the modifying reaction. A docking attempt brought the known acceptor atom, Thr37 O(gamma1) of the switch I region of the RhoA:GDP target structure, near the expected position. The relative orientation of the two proteins was consistent with both being attached to a membrane. Sequence comparisons between toxin B variants revealed that the highest exchange rate occurs around the active center at the putative docking interface, presumably due to a continuous hit-and-evasion struggle between Clostridia and their eukaryotic hosts.  相似文献   

15.
Mono-glucosylation of Rho, Rac, and Cdc42 by Clostridium difficile toxin B (TcdB) induces changes of actin dynamics and apoptosis. When fibroblasts were treated with TcdB, an apparent decrease of the cellular Rac1 level was observed when applying anti-Rac1(Mab 102). This decrease was not based on degradation as inhibition of the proteasome by lactacystin did not stabilise cellular Rac1 levels. The application of anti-Rac1 (Mab 23A8) showed that the cellular Rac1 level slightly increased in TcdB-treated fibroblasts; thus, the apparent loss of cellular Rac1 was not due to degradation but due to impaired recognition of glucosylated Rac1 by anti-Rac1 (Mab 102). In contrast, recognition of RhoA by anti-RhoA (Mab 26C4) and Cdc42 by anti-Cdc42 (Mab 44) was not altered by glucosylation; a transient decrease of cellular RhoA and Cdc42 in TcdB-treated fibroblasts was indeed due to proteasomal degradation, as inhibition of the proteasome by lactacystin stabilised both cellular RhoA and Cdc42 levels. The finding that the apparent decrease of Rac1 reflects Rac1 glucosylation offers a valuable tool to determine Rac1 glucosylation.  相似文献   

16.
Toxin B from Clostridium difficile induces typical morphological changes of cultured cells consisting of rounding up and arborization, which are associated with a dramatic disruption of microfilaments. In this study, we show that toxin L, a cytotoxin produced by bacterial strain Clostridium sordellii, has similar effects on cultured cells including the redistribution of F-actin and of the adhesion plaque protein vinculin. It has been assumed that the mechanisms involved in cytopathic effects of toxin B are related to the function of an unidentified component that regulates the organization of the actin cytoskeleton. We demonstrate that the treatment of cultured astrocytes with toxin B or toxin L alters the incorporation of inorganic phosphate into several proteins. Immunoblot analysis revealed that one of these proteins is tropomyosin. Since tropomyosin stabilizes microfilaments and inhibits the severing activity of gelsolin, the toxin-induced phosphorylation may counteract this inhibition resulting in severing of microfilaments and capping of short filaments. A decrease in the radioactivity associated with intermediate filament protein vimentin was also detected using a monoclonal antibody which specifically recognizes a phosphorylated epitope of vimentin. Since vimentin is an in vivo substrate for various protein kinases, these data are in favor of broad effects of these toxins. Direct measurement of protein kinase C in cells exposed to toxin B or to toxin L did not reveal a significant change in protein kinase C activity. Furthermore, treatments with toxins do not increase cAMP levels, suggesting that toxins do not activate protein kinase A. Although further studies are required to determine the primary target site for the clostridial cytotoxin B and L, our results show that they provoke the alteration in the phosphorylation of cellular proteins.  相似文献   

17.
The influence of polyphosphorylated compounds on intoxication of human lung fibroblasts with Clostridium difficile toxin B was studied. ATP, as well as other nucleoside di-, tri-, and tetraphosphates, inorganic polyphosphates and polyphosphorylated sugars, caused a dose-dependent (1–5 mM range) delay in the appearance of the cytopathogenic effect. With a longer phosphate chain, the delay was more pronounced, although the cytopathogenic effect always developed finally, reaching the level of the control within 20 h. Toxin preparations contained one fraction of molecules able to bind ATP, besides one non-binding fraction. The protective effect of ATP did not depend on its energy producing ability. Neither was the protective effect due to an inactivation of the toxin per se, or to an interference with binding of the toxin to the cells. ATP was protective even upon addition 10 min after the toxin binding step. In the presence of ATP, the toxin remained accessible to neutralization with antitoxin. In analogy with the P-site on diphtheria toxin, we postulate that C. difficile toxin B contains a polyphosphate-binding site. This site is separate from the receptor-binding site, but involved in the interaction of toxin B with the cell surface shortly after the binding step.  相似文献   

18.
Interaction of Clostridium difficile toxin A with L cells in culture   总被引:4,自引:0,他引:4  
Toxin A of Clostridium difficile was purified by column chromatography and acetic acid precipitation. Cells exposed to toxin A showed polarization of nuclei towards one pole of the cells. Toxin A was conjugated to ferritin and applied to L cells to localize binding sites of this toxin to the cell surface. It was found that toxin A conjugate attached to the cell membrane in aggregated form. Antibody specific to toxin A was prepared and used for localization of intracellular toxins in intoxicated cells. Toxin A was found inside the cytoplasm 6 h after cell treatment, mainly in the form of aggregates inside the cytoplasmic vacuoles. At 24 h after exposure, toxin A could be detected within the cytoplasm. Tunicamycin treatment of cells reduced the cell-binding efficiency of toxin A to 50%, but neuraminidase did not effect toxin binding significantly.  相似文献   

19.
Pathogenic yersiniae employ a type III secretion system for translocating up to six effector proteins (Yersinia outer proteins (Yops)) into eukaryotic target cells. YopT is a cysteine protease that was shown to remove the C-terminal isoprenoid group of RhoA, Rac, and CDC42Hs. Here we characterized the cell biological and biochemical activities of YopT in cells infected with pathogenic Yersinia enterocolitica. Bacterially injected YopT located to cell membranes from which it released RhoA but not Rac or CDC42Hs. In the infected cells RhoA was dissociated from guanine nucleotide dissociation inhibitor-1 (GDI-1) and accumulated as a monomeric protein in the cytosol, whereas Rac and CDC42Hs remained GDI-bound. Direct transfer of isoprenylated RhoA to YopT and RhoA modification could be reconstituted in vitro by guanosine 5'-3-O-(thio)triphosphate loading of a recombinant RhoA.GDI-1 complex. Finally, in macrophages infected with a Yersinia strain selectively translocating YopT podosomal adhesion structures required for chemotaxis as well as phagocytic cups mediating uptake of yersiniae were disrupted. These findings indicate that bacterially translocated YopT acts on membrane-bound and GDI-complexed RhoA but not Rac or CDC42, and this is sufficient for disruption of macrophage immune functions.  相似文献   

20.
Clostridium difficile, an emerging nosocomial pathogen of increasing clinical significance, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The precise mechanisms by which toxin synthesis is regulated in response to environmental change have yet to be discovered. The toxin genes (tcdA and tcdB) are located in a pathogenicity locus (PaLoc), along with tcdR and tcdC. TcdR is an alternative RNA polymerase sigma factor that directly activates toxin gene expression, while the inverse relationship between expression of tcdR, tcdA and tcdB genes on the one hand and tcdC on the other has led to the suggestion that TcdC somehow interferes with toxin gene expression. This idea is further supported by the finding that many recent C. difficile epidemic strains in which toxin production is increased carry a common tcdC deletion mutation. In this report we demonstrate that TcdC negatively regulates toxin synthesis both in vivo and in vitro. TcdC destabilizes the TcdR-containing holoenzyme before open complex formation, apparently by interaction with TcdR or TcdR-containing RNA polymerase holoenzyme or both. In addition, we show that the hypertoxigenicity phenotype of C. difficile epidemic strains is not due to their common 18 bp in-frame deletion in tcdC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号