首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To promote bone formation is one of the fundamental strategies in osteoporosis treatment and fractures repair. As one of the stimulators on bone formation, osteogenic growth peptide (OGP) increases both proliferation and differentiation of the osteoblasts in vitro and in vivo, in which osteoprotegerin (OPG) has been suggested being involved. In this study, we evaluated the effects of OGP on bone marrow mesenchymal stem cells (MSCs) from OPG-deficient mice in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, alkaline phosphatase (ALP) activity assay, real-time polymerase chain reaction, and western blot analysis. Results showed that OGP stimulated MSC proliferation and increased the expression of CDK2 and cyclin A in MSCs both at mRNA and protein levels. However, no differentiative effect of OGP was shown as ALP activity and the expression levels of Runx2 and Osterix were not increased significantly by OGP. Our study suggested that OGP may increase the bone formation in OPG-deficient mice by stimulating MSC proliferation rather than differentiation, and probably by triggering CDK2/cyclin A pathway.  相似文献   

3.
Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co‐transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.  相似文献   

4.
5.
Recently we have demonstrated the importance of RBPjk-dependent Notch signaling in the regulation of mesenchymal stem cell (MSC) differentiation during skeletogenesis both in vivo and in vitro. Here we further performed RBPJK loss-of-function experiments to demonstrate for the first time that RBPJK deficient MSC shows enhanced differentiation and osteogenesis acts via up-regulation of the BMP signaling. In the present study, we first compared the spontaneous and osteogenic differentiation in normal and recombination signal binding protein for immunoglobulin kappa J region (RBPJK) deficient human bone marrow-derived mesenchymal stem cells (MSCs). It was found that RBPJK highly expressed in fresh isolated MSCs and its expression was progressing down-regulated during spontaneous differentiation and even greater in osteogenic media inducted differentiation. Deletion of RBPJK in MSCs not only enhances cell spontaneous differentiation, but also significantly accelerates condition media inducted osteogenic differentiation by showing enhanced alkaline phosphatase (ALP) activity, Alizarin red staining, gene expression of Runx2, Osteopontin (OPN), Type I collagen (COL1a1) in culture. Additionally, BMP signaling responsive reporter activity and phosphor-smad1/5/8 expression were also significantly increased upon removal of RBPJK in MSCs. These data proved that inhibition of Notch signaling in MSCs promotes cell osteogenic differentiation by up-regulation of BMP signaling, and RBPJK deficient MSC maybe a better cell population for cell-based bone tissue engineering.  相似文献   

6.
Bone marrow mesenchymal stem cells (MSCs) are considered a potential cell source for stem cell-based bone tissue engineering. However, noticeable limitations of insufficient supply and reduction of differentiation potential impact the feasibility of their clinical application. This study investigated the in vitro function of steroids and gender differences on the proliferation and differentiation of rat MSCs. Bone marrow MSCs of age-matched rats were exposed to proliferation and osteogenic differentiation media supplements with various concentrations of 17β-estradiol (E2) and dexamethasone. Cell proliferation was measured by MTS assay; osteogenic markers and steroid-associated growth factors and receptors were evaluated by ELISA and real-time PCR. The results revealed that supplements of E2 and dexamethasone increase MSC proliferation in a biphasic manner. The optimal dose and interaction of steroids required to improve MSC proliferation effectively varied depending on the gender of donors. Supplementation of E2 effectively improves osteogenic differentiation markers including ALP, osteocalcin and calcium levels for MSCs isolated from both male and female donors. The mRNA of TGF-β1 and BMP-7 are also up-regulated. However, effective doses to maximally improve osteogenic potentials and growth factors for MSCs are different between male and female donors. The relationship between steroid receptors, osteogenic markers and cytokines are also varied by genders. The outcomes of the present study strongly indicate that steroids potentially function as an effective modulator to improve the capacity of MSCs in bone regeneration. It provides crucial information for improving and optimizing MSCs for future clinical application of bone regeneration.  相似文献   

7.
目的:研究在构建的去卵巢骨质疏松山羊动物模型中,骨髓基质细胞(MSCs)的生物学特性以及其成骨能力。方法:建立去卵巢骨质疏松山羊动物模型,使用全骨髓法获取去卵巢骨质疏松山羊(实验组)和正常山羊(对照组)MSCs,流式细胞仪检测实验组和对照组细胞周期及增殖指数(PI);地塞米松诱导21d时油红O染色,观察成脂分化比例;成骨诱导液诱导14d,碱性磷酸酶(ALP)染色、检测ALP表达量。结果:对照组PI高于实验组;地塞米松诱导后实验组脂肪细胞比例明显高于对照组;成骨诱导第7d,对照组ALP的表达量明显高于实验组。结论:去卵巢骨质疏松山羊的MSCs增殖和成骨分化能力都降低,可能与骨质疏松症的发病机理有关。  相似文献   

8.
9.
Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteogenic differentiation of miniature pig MSCs and markers of this differentiation in vitro. Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma-alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7(th) or 14(th) day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21(th) day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro. We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic markers in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM.  相似文献   

10.
11.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

12.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

13.
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations.  相似文献   

14.
15.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

16.
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.  相似文献   

17.
18.
19.
20.
Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号