首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

2.
Late infantile neuronal ceroid lipofuscinosis is a fatal childhood neurological disorder caused by a deficiency in the lysosomal protease tripeptidyl-peptidase 1 (TPP1). TPP1 represents the only known mammalian member of the S53 family of serine proteases, a group characterized by a subtilisin-like fold, a Ser-Glu-Asp catalytic triad, and an acidic pH optimum. TPP1 is synthesized as an inactive proenzyme (pro-TPP1) that is proteolytically processed into the active enzyme after exposure to low pH in vitro or targeting to the lysosome in vivo. In this study, we describe an endoglycosidase H-deglycosylated form of TPP1 containing four Asn-linked N-acetylglucosamines that is indistinguishable from fully glycosylated TPP1 in terms of autocatalytic processing of the proform and enzymatic properties of the mature protease. The crystal structure of deglycosylated pro-TPP1 was determined at 1.85 Å resolution. A large 151-residue C-shaped prodomain makes extensive contacts as it wraps around the surface of the catalytic domain with the two domains connected by a 24-residue flexible linker that passes through the substrate-binding groove. The proenzyme structure reveals suboptimal catalytic triad geometry with its propiece linker partially blocking the substrate-binding site, which together serve to prevent premature activation of the protease. Finally, we have identified numerous processing intermediates and propose a structural model that explains the pathway for TPP1 activation in vitro. These data provide new insights into TPP1 function and represent a valuable resource for constructing improved TPP1 variants for treatment of late infantile neuronal ceroid lipofuscinosis.Late infantile neuronal ceroid lipofuscinosis (LINCL)3 (OMIM number 204500) is a neurodegenerative lysosomal storage disease of childhood that presents typically between the ages of 2 and 4 years with the onset of seizures. Disease progression is reflected by blindness, dementia, mental retardation, and an increase in the severity of seizures. LINCL is always fatal, and the life span of patients is typically 6-15 years. LINCL is caused by mutations in TPP1 (previously named CLN2, for ceroid lipofuscinosis neuronal type 2 gene) (1), which normally encodes a lysosomal protease, tripeptidyl-peptidase 1 (TPP1, EC 3.4.14.9) (2, 3).There is currently no treatment of demonstrated efficacy for LINCL, but promising progress is being made in some directions. Proof-of-principle for virus-mediated gene therapy has been established in a mouse model of LINCL, with a significant improvement in disease phenotype achieved with the use of adeno-associated virus vectors expressing TPP1 (4-7). Affected children have also been treated with adeno-associated virus vectors, although it is too soon to determine whether significant clinical benefits have been achieved in these early trials (8). Enzyme replacement therapy, an approach that has proven successful in a number of other lysosomal storage diseases, has also been investigated in LINCL. Purified recombinant human TPP1 that contains the mannose 6-phosphate lysosomal targeting modification can be taken up by LINCL fibroblasts where it degrades storage material (9), and the protein has been introduced into the cerebrospinal fluid of the LINCL mouse model via intraventricular injection, resulting in significant uptake into the brain and some correction of neuropathology (10).For therapeutic approaches that rely upon replacing a mutant gene product with a functional protein via recombinant methods, e.g. gene and enzyme replacement therapy, a thorough understanding of the biological and biophysical properties of the protein in question are essential for success. Thus, for LINCL, considerable effort has been directed toward the investigation of TPP1, and as a result, this is a well characterized enzyme at the functional and molecular levels (reviewed in Refs. 11, 12). TPP1 encodes a 563-residue preproprotein with a cleavable N-terminal 19-residue signal sequence. The proenzyme (residues 20-563) is a soluble monomer that undergoes proteolytic cleavage in the lysosome, converting the zymogen to an active, mature protease (residues 196-563) (1). Studies on purified pro-TPP1 demonstrate that maturation is autocatalytic in vitro (13, 14) but may involve other proteases in vivo (15). TPP1 is glycosylated, and its N-linked oligosaccharides have been implicated in maturation, activity, targeting, and stability of the processed enzyme (16, 17).TPP1 is a serine protease (14) that possesses two catalytic functions as follows: a primary tripeptidyl exopeptidase activity with a pH optimum of ∼5.0 that catalyzes the sequential release of tripeptides from the unsubstituted N termini of substrates (18), and a much weaker endoproteolytic activity with a pH optimum of ∼3.0 (19). TPP1 exhibits broad substrate specificity (20) and is the only mammalian member of the S53 sedolisin family (reviewed in Ref. 21), which includes a number of unusual bacterial serine peptidases (22). High resolution crystal structures of both free and inhibitor-bound complexes have been determined for three bacterial members of this family (sedolisin (23-26), kumamolisin (27, 28), and kumamolisin-As (29, 30)), and for one (kumamolisin), the structure of a mutant, inactive precursor form has also been obtained (28). These proteins share a common subtilisin-like fold, an octahedrally coordinated calcium-binding site, and an active site that contains an unusual Ser-Glu-Asp (SED) catalytic triad, rather than the Ser-His-Asp (SHD) triad of subtilisin (31, 32). Chemical modification studies of TPP1 have revealed that Ser475 is the active site nucleophile (14). Modeling studies suggest that Glu272 and Asp276 complete the catalytic triad and that Asp360 is homologous to the conserved Asn in the subtilisin family in its role in stabilization of the oxyanion of the tetrahedral intermediate during catalysis (33). Site-directed mutagenesis studies are consistent with these conclusions (14, 34).A detailed understanding of the tertiary structure of TPP1 may have implications for developing or improving therapeutic strategies. First, a high resolution model would provide the basis for targeted protein engineering efforts to design TPP1 derivatives with increased half-life prior to and/or upon delivery to the lysosome. Successful creation of a longer lived TPP1 molecule could significantly enhance gene or enzyme replacement approaches to LINCL. Second, a structural model for TPP1 could be valuable in designing derivatives tagged with protein transduction domains to facilitate crossing of the blood-brain barrier for delivery to the central nervous system from the bloodstream. In this study, we present the crystal structure of the proform of human TPP1 at 1.85 Å resolution. This model provides novel insights into the structural basis for the pH-induced auto-activation of the proform of TPP1. A structure of glycosylated pro-TPP1 has been independently determined, displaying features similar to those of deglycosylated TPP1.4  相似文献   

3.
Classical late-infantile neuronal ceroid lipofuscinosis (LINCL), a progressive and fatal neurodegenerative disease of childhood, results from mutations in a gene (CLN2) that encodes a protein with significant sequence similarity to prokaryotic pepstatin-insensitive acid proteases. We have developed a sensitive protease activity assay that allows biochemical characterization of the CLN2 gene product in various human biological samples, including solid tissues (brain and chorionic villi), blood (buffy coat leukocytes, platelets, granulocytes, and mononuclear cells), and cultured cells (lymphoblasts, fibroblasts, and amniocytes). The enzyme has a pH optimum of 3.5 and is rapidly inactivated at neutral pH. A survey of fibroblasts and lymphoblasts demonstrated that lack of activity was associated with LINCL arising from mutations in the CLN2 gene but not other neuronal ceroid lipofuscinoses (NCLs), including the CLN6 variant LINCL, classical infantile NCL, classical juvenile NCL, and adult NCL (Kufs' disease). A study conducted using blood samples collected from classical LINCL families whose affliction was confirmed by genetic analysis indicates that the assay can distinguish homozygotes, heterozygotes, and normal controls and thus is useful for diagnosis and carrier testing. Analysis of archival specimens indicates that several specimens previously classified as LINCL have enzyme activity and thus disease is unlikely to arise from mutations in CLN2. Conversely, a specimen previously classified as juvenile NCL lacks pepinase activity and is associated with mutations in CLN2. In addition, several animals with NCL-like neurodegenerative symptoms [mutant strains of mice (nclf and mnd), English setter, border collie, and Tibetan terrier dogs, sheep, and cattle] were found to contain enzyme activity and are thus unlikely to represent models for classical LINCL. Subcellular fractionation experiments indicate that the CLN2 protein is located in lysosomes, which is consistent with its acidic pH optimum for activity and the presence of mannose 6-phosphate. Taken together, these findings indicate that LINCL represents a lysosomal storage disorder that is characterized by the absence of a specific protease activity.  相似文献   

4.
Tripeptidyl peptidase I (TPPI) — a lysosomal serine protease — is encoded by the CLN2 gene, mutations that cause late-infantile neuronal ceroid lipofuscinosis (LINCL) connected with profound neuronal loss, severe clinical symptoms and early death at puberty. Developmental studies of TPPI activity levels and distribution have been done in the human and rat central nervous systems (CNS) and visceral organs. Similar studies have not been performed in mouse. In this paper, we follow up on the developmental changes in the enzyme activity and localization pattern in the CNS and visceral organs of mouse over the main periods of life — embryonic, neonate, suckling, infantile, juvenile, adult and aged — using biochemical assays and enzyme histochemistry. In the studied peripheral organs (liver, kidney, spleen, pancreas and lung) TPPI is present at birth but further its pattern is not consistent in different organs over different life periods. TPPI activity starts to be expressed in the brain at the 10th embryonic day but in most neuronal types it appears at the early infantile period, increases during infancy, reaches high activity levels in the juvenile period and is highest in adult and aged animals. Thus, in mice TPPI activity becomes crucial for the neuronal functions later in development (juvenile period) than in humans and does not decrease with aging. These results are essential as a basis for comparison between normal and pathological TPPI patterns in mice. They can be valuable in view of the use of animal models for studying LINCL and other neurodegenerative disorders.  相似文献   

5.
The total ACh content and AChE activity were determined 1 hr after the i.p. injection of different doses of thiopental sodium (5, 10 and 20 mg/ml/100 g body wt) and barbitone sodium (20, 40 and 80 mg/ml/100 g body wt). The effect of different time intervals (1 min, 10 min, 30 min, 1 hr, 2.5 hr, 5 hr, 8 hr, 12 hr, 24 hr and 48 hr) on the total ACh content and AChE activity was investigated after i.p. injection of 10 mg thiopental sodium and 40 mg barbitone sodium/ml/100 g body wt. Both thiopental sodium and barbitone sodium increased the total ACh content in the brain tissue of Arvicanthis niloticus. Both drugs inhibited the brain AChE activity. It is thought that the increase in the total ACh content in the brain tissue of Arvicanthis niloticus may be due to a decrease in the release of ACh from the neuronal tissue and a decrease in AChE activity.  相似文献   

6.
A trehalose-6-phosphate phosphatase (TPP) gene, otsB, from a psychrotrophic bacterium, Arthrobacter strain A3, was identified. The product of this otsB gene is 266 amino acids in length with a calculated molecular weight of 27,873 Da. The protein was expressed in Escherichia coli and purified to apparent homogeneity. The purified recombinant TPP catalyzed the dephosphorylation of trehalose-6-phosphate to form trehalose and showed a broad optimum pH range from 5.0 to 7.5. This enzyme also showed an absolute requirement for Mg(2+) or Co(2+) for catalytic activity. The recombinant TPP had a maximum activity at 30 °C and maintained activity over a temperature range of 4-30 °C. TPP was generally heat-labile, losing 70 % of its activity when subjected to heat treatment at 50 °C for 6 min. Kinetic analysis of the Arthrobacter strain A3 TPP showed ~tenfold lower K (m) values when compared with values derived from other bacterial TPP enzymes. The highest k (cat)/K (m) value was 37.5 mM(-1) s(-1) (repeated three times), which is much higher than values published for mesophilic E. coli TPP, indicating that the Arthrobacter strain A3 TPP possessed excellent catalytic activity at low temperatures. Accordingly, these characteristics suggest that the TPP from the Arthrobacter strain A3 is a new cold-adapted enzyme. In addition, this is the first report characterizing the enzymatic properties of a TPP from a psychrotrophic organism.  相似文献   

7.
Activities of the anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were studied in rat tissues to determine the ability of detergents both to solubilize the enzymes and also to stabilize enzyme activity. Rat brain, heart and liver were homogenized in 0.1M KCl, 0.1% sodium dodecyl sulfate, 0.1% lubrol, or 0.1% cetyl-trimethylammonium bromide. In general lubrol was more effective than the other solutions in solubilizing GPx and catalase. Lubrol and 0.1M KCl were equally effective in solubilizing SOD. The highest enzyme activities were (1) SOD: 2484 ng/mg (brain), 2501 ng/mg (heart), and 5586 ng/mg (liver); (2) GPx: 224 mU/mg (brain), 1870 mU/mg (heart), and 7332 mU/mg (liver); (3) catalase: 2.8 mU/mg (brain), 10.6 mU/mg (heart), and 309 mU/mg (liver). While cetyl trimethylammonium bromide is marginally better than sodium dodecyl sulfate in solubilizing active enzyme, neither ionic detergent has any advantage over lubrol or 0.1M KCl. For catalase and GPx, enzyme activity loss with time is biphasic. After initial, rapid activity loss (1–5 days for GPx and 7–10 days for catalase) the differences noted among the homogenizing solutions disappear and very little if any activity loss is noted over the next 2–3 weeks. For catalase and GPx, only baseline enzyme activity from t = 0 – 3 weeks is found in the most chaotropic solution, 0.1% sodium dodecyl sulfate while biphasic activity loss is most pronounced in 0.1% lubrol. These results may indicate active GPx and catalase species stabilized by a lipid-like environment. Correlatingin vitro catalase or GPx measurements within vivo anti-oxidative protection may underestimate tissue defences.  相似文献   

8.
The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ−/−, but not PPARα−/−, mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.  相似文献   

9.
We purified tripeptidyl peptidase I (TPP I) to homogeneity from a rat kidney lysosomal fraction and determined its physicochemical properties, including its molecular weight, substrate specificity and partial amino acid sequence. The molecular weight of the enzyme was calculated to be 280,000 and 290,000 by non-denaturing PAGE and gel filtration, respectively, and to be 43 000 and 46 000 on SDS-PAGE in the absence and presence of beta-ME, respectively. These findings suggest that the enzyme is composed of six identical subunits. The Km, Vmax, kcat and kcat/Km values of TPP I at optimal pH (pH 4.0) were 680 microM, 3.7 micromol x mg(-1) x min(-1), 33.1 s(-1) and 4.87 x 10(4) s(-1) x M(-1) for Ala-Ala-Phe-MCA, respectively. TPP I was significantly inhibited by PCMBS and HgCl2, and moderately by DFP. These findings also suggest that TPP I is an exotype serine peptidase that is regulated by SH reagent. TPP I released the tripeptide Arg-Val-Tyr from angiotensin III more rapidly than from Ala-Ala-Phe-MCA, and also released Gly-Asn-Leu from neuromedin B with the same velocity as from Ala-Ala-Phe-MCA. Angiotensin III and neuromedin B have recently been found to be good natural substrates for lysosomal TPP I. Furthermore, we determined the rat liver cDNA structure and deduced the amino acid sequence. The cDNA, designated as lambdaRTI-1, is composed of 2485 bp and encodes 563 amino acids in the coding region. By Northern blot analysis, the order for TPP I mRNA expression was kidney > or = liver > heart > brain > lung > spleen > skeletal muscle and testis. In parallel experiments, the TPP I antigen was detected in various rat tissues by immunohistochemical staining.  相似文献   

10.
In this work deviation of liver metabolism by cytokines, especially recombinant human interleukin 1-alpha (rhIL1-alpha), was investigated. Administration of rhIL1-alpha or recombinant human tumor necrosis factor (rhTNF/cachectin) to normal mice resulted in rapid, dose-dependent induction of high liver ornithine decarboxylase (ODC) activity. The effects of these cytokines on liver ODC were not indirect effects mediated by eicosanoids. The induction of liver ODC by rhIL1-alpha was at least partly a direct effect on hepatocytes, and was due to increase in de novo synthesis of the enzyme protein after increase in ODC mRNA. No specific protein was required for increase in the level of ODC-mRNA. On IL1 treatment, actinomycin D caused superinduction of liver ODC, which was at least partly due to increased stability of the ODC enzyme, because actinomycin D doubled the apparent half-life (from 50 to 95 min). Daily administration of 2 x 10(3) U of rhIL1-alpha to mice for 3 days also caused decrease in the level of the differentiated type of pyruvate kinase isozyme (PK-L) and marked increase in that of the prototype isozyme (PK-M2) in the liver, but did not cause significant change in the isozyme patterns of the kidney, thymus, and spleen. RhIL1-alpha also induced hypertrophy of the spleen. These results indicate that rhIL1-alpha causes metabolic deviation of the liver similar to that in tumor-bearing hosts.  相似文献   

11.
LINCL (late-infantile neuronal ceroid lipofuscinosis) is a fatal neurodegenerative disease resulting from mutations in the gene encoding the lysosomal protease TPPI (tripeptidyl-peptidase I). TPPI is expressed ubiquitously throughout the body but disease appears restricted to the brain. One explanation for the absence of peripheral pathology is that in tissues other than brain, other proteases may compensate for the loss of TPPI. One such candidate is another lysosomal aminopeptidase, DPPI (dipeptidyl-peptidase I), which appears to have overlapping substrate specificity with TPPI and is expressed at relatively low levels in brain. Compensation for the loss of TPPI by DPPI may have therapeutic implications for LINCL and, in the present study, we have investigated this possibility using mouse genetic models. Our rationale was that if DPPI could compensate for the loss of TPPI in peripheral tissues, then its absence should exacerbate disease in an LINCL mouse model but, conversely, increased CNS (central nervous system) expression of DPPI should ameliorate disease. By comparing TPPI and DPPI single mutants with a double mutant lacking both proteases, we found that the loss of DPPI had no effect on accumulation of storage material, disease severity or lifespan of the LINCL mouse. Transgenic expression of DPPI resulted in a approximately 2-fold increase in DPPI activity in the brain, but this had no significant effect on survival of the LINCL mouse. These results together indicate that DPPI cannot functionally compensate for the loss of TPPI. Therapeutic approaches to increase neuronal expression of DPPI are therefore unlikely to be effective for treatment of LINCL.  相似文献   

12.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of fatty acids. Because fatty acids are required during myelination in the developing brain, it was proposed that the level of acetyl-CoA carboxylase may be highest in embryonic brain. The presence of acetyl-CoA carboxylase activity was detected in chick embryo brain. Its activity varied with age, showing a peak in the 17-18-day-old embryo and decreasing thereafter. The enzyme, affinity-purified from 18-day-old chick embryo brain, appeared as a major protein band on polyacrylamide electrophoresis gels in the presence of sodium dodecyl sulfate (Mr 265,000), indistinguishable from the 265 kDa isozyme of liver acetyl-CoA carboxylase. It had significant activity (Sp act = 1.1 mumol/min per mg protein) in the absence of citrate. There was a maximum stimulation of only 25% in the presence of citrate. Dephosphorylation using [acetyl-CoA carboxylase] phosphatase 2 did not result in activation of the enzyme. Palmitoyl-CoA (0.1 mM) and malonyl-CoA (1 mM) inhibited the activity to 95% and 71%, respectively. Palmitoylcarnitine, however, did not show significant inhibition. The enzyme was inhibited (greater than 95%) by avidin; however, avidin did not show significant inhibition in the presence of excess biotin. The enzyme was also inhibited (greater than 90%) by antibodies against liver acetyl-CoA carboxylase. An immunoblot or avidin-blot detected only one protein band (Mr 265,000) in preparations from chick embryo brain or adult liver. These observations suggest that acetyl-CoA carboxylase is present in embryonic brain and that the enzyme appears to be similar to the 265 kDa isozyme of liver.  相似文献   

13.
Aldehyde dehydrogenase (EC 1.2.1.3) has been purified from human brain; this constitutes the first purification to homogeneity from the brain of any mammalian species. Of the three isozymes purified two are mitochondrial in origin (Peak I and Peak II) and one is cytoplasmic (Peak III). By comparison of properties, the cytoplasmic Peak III enzyme could be identified as the same as the liver cytoplasmic E1 isozyme (N.J. Greenfield and R. Pietruszko (1977) Biochim. Biophys. Acta 483, 35-45). The Peak I and Peak II enzymes resemble the liver mitochondrial E2 isozyme, but both have properties that differ from those of the liver enzyme. The Peak I enzyme is extremely sensitive to disulfiram while the Peak II enzyme is totally insensitive; liver mitochondrial E2 isozyme is partially sensitive to disulfiram. The specific activity is 0.3 mumol/mg/min for the Peak I and 3.0 mumol/mg/min for the Peak II enzyme; the specific activity of the liver mitochondrial E2 isozyme is 1.6 mumol/min/mg under the same conditions. The Peak I enzyme is also inhibited by acetaldehyde at low concentrations, while the Peak II enzyme and the liver mitochondrial E2 isozyme are not inhibited under the same conditions. The precise relationship of brain Peak I and II enzymes to the liver E2 isozyme is not clear but it cannot be excluded at the present time that the two brain mitochondrial enzymes are brain specific.  相似文献   

14.
The purpose of the present study was to examine the antioxidant activity of two typical oils obtained from two vegetables, bitter gourd seed and snake gourd seed, containing two different isomers of conjugated linolenic acid (CLnA) against oxidative stress induced by sodium arsenite in relation to tissue lipid peroxidation and inflammation. Male albino rats were taken as subject and divided into six groups: Group 1 was control and Group 2 was treated with sodium arsenite (Sa; 10mg/Kg BW); Groups 3-6 were orally treated with different doses of seed oils maintaining definite concentration of CLnA isomers (0.5% and 1.0% of total lipid for each CLnA isomer) along with sodium arsenite. There was significant increase in lipid peroxidation, pro-oxidant enzyme activity and decrease in antioxidant enzyme activity in brain due to Sa administration. Decrease in total protein content was also observed in plasma, liver and brain of Sa treated group. Significant decrease in phospholipid content and increase in total lipid content and cholesterol content were observed in arsenite treated group. There was significant increase in relative organ weight of liver due to Sa administration. Fatty acid profile of liver and brain lipid shows significant (P<0.05) reduction in most of the polyunsaturated fatty acids and increase in arachidonic acid (20:4n-6) (75.23%) due to inflammation after arsenite treatment. Administration of experimental oils made almost complete restoration of those altered parameters. Overall, these two oils were effective in protecting tissue lipid profiles which were altered due to oxidative stress.  相似文献   

15.
Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.  相似文献   

16.
The trehalose-phosphate phosphatase (TPP) was purified from the cytosol of Mycobacterium smegmatis to near homogeneity using a variety of conventional steps to achieve a purification of about 1600-fold with a yield of active enzyme of about 1%. Based on gel filtration, the active enzyme had a molecular weight of about 27,000, and the most purified fraction also gave a major band on SDS-PAGE corresponding to a molecular weight of about 27,000. A number of peptides from the 27-kDa protein were sequenced and these sequences showed considerable homology to the trehalose-P phosphatase (otsB) of Escherichia coli. Based on these peptides, the M. smegmatis gene for TPP was cloned and expressed in E. coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. Most of the TPP activity in the crude E. coli sonicate was initially found in the membrane fraction, but it became solubilized in the presence of 0.2% Sarkosyl. The solubilized protein was purified to apparent homogeneity on a metal ion column and this fraction had high phosphatase activity that was completely specific for trehalose-P. The purified enzyme, either isolated from M. smegmatis, or expressed in E. coli, rapidly dephosphorylated trehalose-6-P, but had essentially no activity on any other sugar phosphates, or on p-nitrophenyl phosphate. The K(m) for trehalose-6-P was about 1.6 mm, and the pH optimum was about 7.5. The native enzyme showed an almost absolute requirement for Mg(2+) and was not very active with Mn(2+), whereas both of these cations were equally effective with the recombinant TPP. The enzyme activity was inhibited by the antibiotics, diumycin and moenomycin, but not by a number of other antibiotics or trehalose analogs. TPP activity was strongly inhibited by the detergents, Sarkosyl and deoxycholate, even at 0.025%, but it was not inhibited by Nonidet P-40, Triton X-100, or octyl glucoside, even at concentrations up to 0.3%. The purified enzyme was stable to heating at 60 degrees C for up to 6 min, but was slowly inactivated at 70 degrees C. Circular dichroism studies on recombinant TPP indicate that the secondary structure of this protein has considerable beta-pleated sheet and is very compact. TPP may play a key role in the biosynthesis of trehalose compounds, such as trehalose mycolates, and therefore may represent an excellent target site for chemotherapy against tuberculosis and other mycobacterial diseases.  相似文献   

17.
Sinan S  Kockar F  Arslan O 《Biochimie》2006,88(5):565-574
Human serum paraoxonase (PON1, EC 3.1.8.1.) is a high-density lipid (HDL)-associated, calcium-dependent enzyme; its physiological substrates are not known. In this study, a new purification strategy for human PON1 enzyme was developed using two-step procedures, namely ammonium sulfate precipitation and sepharose-4B-l-tyrosine-1-napthylamine hydrophobic interaction chromatography. SDS-polyacrylamide gel electrophoresis of the enzyme indicates a single band with an apparent MW of 43 kDa. Overall purification rate of our method was found 227-fold. The V(max) and K(m) of the purified enzyme were determined 227.27 EU and 4.16 mM, respectively. The in vitro effects of commonly used antibiotics, namely gentamycin sulfate and cefazolin sodium was also investigated on the purified human serum PON1 enzyme and human liver PON1 enzyme from human hepatoma cell (HepG2). Gentamycin sulfate and cefazolin sodium caused a dose- and time-dependent decrease on PON1 activity in HepG2 cells. Moreover, gentamycin sulfate and cefazolin sodium were effective inhibitors on purified human serum PON1 activity with IC(50) of 0.887 and 0.0084 values, respectively. The kinetics of interaction of gentamycin sulfate and cefazolin sodium with the purified human serum PON1 indicated a different inhibition pattern. Cefazolin sodium showed a competitive inhibition with K(i) of 0.012+/-0.00065 mM. However, Gentamycin sulfate was inhibited in non-competitive manner with K(i) of 0.026+/-0.015. In order to determine the inhibition statue of these drugs on a living system, the effects of same antibiotics on PON1 enzyme activity of mouse serum PON1 and liver PON1 were investigated in vivo. Gentamycin sulfate (3.2 mg/kg) and cefazolin sodium (106.25 mg/kg) leads to the significant decrease in mouse serum PON1 after 2, 4, 6 h and 2, 4 h drug administration, respectively. Cefazolin sodium did not exhibit any inhibition effect for the liver PON1, in vivo.  相似文献   

18.
1,3-丙二醇(1,3-propanediol,1,3-PD)是一种重要的化工原料,越来越受到广泛的关注。以弗氏柠檬酸菌(Citrobacter freundii)基因组DNA为模板,通过PCR得到1,3-丙二醇氧化还原酶(1,3-propanediol dehydrogenase,PDOR) 的基因dhaT,序列显示与来源于C.freundii DSM 30040 (Genbank U09771)相应基因的相似性为78%。将此基因构建于表达载体pSE380,得到重组质粒pSE-dhaT。重组质粒转化到宿主菌E.coli JM109中进行了表达,重组酶通过镍柱及Sephacral S-300进行纯化,重组酶SDS-PAGE结果显示有非常明显的单一的42kDa特异性蛋白条带出现。以丙醛为底物测定重组酶还原反应的最适温度为37℃、最适pH为8.0,对丙醛的Km值为10.05mmol/L,最大反应速度Vmax为37.27umol/ min /mg;以1,3-PD为底物测定重组酶氧化反应的最适温度为25℃、最适pH为10.5,对1,3-PD的Km值为1.28mmol/L,最大反应速度Vmax为25.55umol/min/mg。重组酶的还原反应比活为49.50U/mg,氧化反应比活为79.72U/mg。该酶同样具有假定的结合Fe2+的G-X-X-H-X-X-A-H-X-X-G-X-X-X-X-X-P-H-G模体保守结构。此研究为工程菌高效生产1,3-PD奠定了基础。  相似文献   

19.
Protection of organisms from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu++/Zn++-type superoxide dismutase (SOD) rapidly undergoes renal glomerular filtration and appears in urine in its intact form, its clinical use as a scavenger for superoxide radicals has been highly limited. To test whether reversible interaction of SOD with plasma albumin might decrease the rate of disappearance of the enzyme from the circulation, the lysyl residues of the human erythrocyte-type enzyme were covalently linked with poly-(styrene-co-maleic acid) butyl ester (SMA) via amide linkage. Affinity chromatographic analysis by an albumin-Sepharose column revealed that the enzyme samples labeled with SMA (SMA-SOD) tightly bound to the column, while unmodified SOD was eluted in the unbound fractions. SMA-SOD bound to the column could be eluted by the buffer solution containing 0.1% sodium dodecylsulfate. In vivo analysis revealed that intravenously administered SMA-SOD circulated bound to albumin with an extremely long half-life (6 h), while unmodified SOD rapidly underwent renal glomerular filtration with a plasma half-life of 4 min. Thus, SMA-SOD may effectively dismutase superoxide radicals in the circulation.  相似文献   

20.
The hepatic cysteine dioxygenase activity of rats was markedly decreased by the intraperitoneal administration of glucagon. The enzyme activity was also decreased by either dibutyryl cyclic AMP or theophylline. The prior administration of actinomycin D completely blocked the glucagon-mediated decrease of enzyme activity, while administrations of this inhibitor of protein synthesis after glucagon injection did not block the decrease of enzyme activity. A single administration of actinomycin D resulted in a slight increase of cysteine dioxygenase activity in the rat liver. On the other hand, the injection of cycloheximide resulted in a rapid decrease of the hepatic cysteine dioxygenase with a half-life of 2.5 h. The half-life of the enzyme in rat liver after glucagon administration was one hour. The administration of hydrocortisone or insulin had no effect on the glucagon-mediated decrease of cysteine dioxygenase of rat liver. The enzyme activity of alloxan diabetic rat liver was almost the same as that of the intact rat liver. The evidence obtained here suggests that enhancement of degradation or inactivation of cysteine dioxygenase is responsible for the glucagon-mediated decrease of the enzyme activity in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号