首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR. The cytoplasmic domain of CD3 ζ also contains several clusters of arginine and lysine residues. In this study, we report that these basic amino acids enable CD3 ζ to complex the phosphoinositides PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3) with high affinity. Early TCR signaling pathways were unaffected by the targeted loss of the phosphoinositide-binding functions of CD3 ζ. Instead, the elimination of the phosphoinositide-binding function of CD3 ζ significantly impaired the ability of this invariant chain to accumulate stably at the immunological synapse during T cell-APC interactions. Without its phosphoinositide-binding functions, CD3 ζ was concentrated in intracellular structures after T cell activation. Such findings demonstrate a novel functional role for CD3 ζ BRS-phosphoinositide interactions in supporting T cell activation.  相似文献   

2.
ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.  相似文献   

3.
The Phox homology (PX) domain is a functional module that targets membranes through specific interactions with phosphoinositides. The p47(phox) PX domain preferably binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) and plays a pivotal role in the assembly of phagocyte NADPH oxidase. We describe the PI(3,4)P(2) binding mode of the p47(phox) PX domain as identified by a transferred cross-saturation experiment. The identified PI(3,4)P(2)-binding site, which includes the residues of helices α1 and α1' and the following loop up to the distorted left-handed PP(II) helix, is located at a unique position, as compared with the phosphoinositide-binding sites of all other PX domains characterized thus far. Mutational analyses corroborated the results of the transferred cross-saturation experiments. Moreover, experiments with intact cells demonstrated the importance of this unique binding site for the function of the NADPH oxidase. The low affinity and selectivity of the atypical phosphoinositide-binding site on the p47(phox) PX domain suggest that different types of phosphoinositides sequentially bind to the p47(phox) PX domain, allowing the regulation of the multiple events that characterize the assembly and activation of phagocyte NADPH oxidase.  相似文献   

4.
Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.  相似文献   

5.
SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.  相似文献   

6.
Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.  相似文献   

7.
All cells contain mechanosensitive ion channels, yet the molecular identities of most are unknown. The purpose of our study was to determine what encodes the Xenopus oocyte's mechanosensitive cation channel. Based on the idea that homologues to known channels might contribute to the stretch channels, we screened a Xenopus oocyte cDNA library with cation channel probes. Whereas other screens were negative, P2X probes identified six isoforms of the P2X4 subtype of ATP-gated channels. From RNase protection assays and RT-PCR, we demonstrated that Xenopus oocytes express P2X4 mRNA. In expression studies, four isoforms produced functional ATP-gated ion channels; however, one, xP2X4c, had a conserved cysteine replaced by a tyrosine and failed to give rise to functional channels. By changing the tyrosine to a cysteine, we showed that this cysteine was crucial for function. We raised antibodies against a Xenopus P2X4 C-terminal peptide to investigate xP2X4 protein expression. This affinity purified anti-xP2X4 antibody recognized a 56 kDa glycosylated Xenopus P2X4 protein expressed in stably transfected HEK-293 cells and in P2X4 cDNA injected oocytes overexpressing the cloned P2X4 channels; however, it failed to recognize proteins in control, uninjected oocytes. This suggests that P2X4 channels and mechanosensitive cation channels are not linked. Instead, oocyte P2X4 mRNA may be part of the stored pool of stable maternal mRNA that remains untranslated until later developmental stages.  相似文献   

8.
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.  相似文献   

9.
ATP-gated P2X(2) channels undergo activation-dependent permeability increases as they proceed from the selective I(1) state to the I(2) state that is readily permeable to organic cations. There are two main models about how permeability changes may occur. The first proposes that permeability change-competent P2X channels are clustered or redistribute to form such regions in response to ATP. The second proposes that permeability changes occur because of an intrinsic conformational change in P2X channels. In the present study we experimentally tested these views with total internal reflection fluorescence microscopy, electrophysiology, and mutational perturbation analysis. We found no evidence for clusters of P2X(2) channels within the plasma membrane or for cluster formation in response to ATP, suggesting that channel clustering is not an obligatory requirement for permeability changes. We next sought to identify determinants of putative intrinsic conformational changes in P2X(2) channels by mapping the transmembrane domain regions involved in the transition from the relatively selective I(1) state to the dilated I(2) state. Initial channel opening to the I(1) state was only weakly affected by Ala substitutions, whereas dramatic effects were observed for the higher permeability I(2) state. Ten residues appeared to perturb only the I(1)-I(2) transition (Phe(31), Arg(34), Gln(37), Lys(53), Ile(328), Ile(332), Ser(340), Gly(342), Trp(350), Leu(352)). The data favor the hypothesis that permeability changes occur because of permissive motions at the interface between first and second transmembrane domains of neighboring subunits in pre-existing P2X(2) channels.  相似文献   

10.
11.
Silberberg SD  Li M  Swartz KJ 《Neuron》2007,54(2):263-274
P2X receptors are trimeric cation channels that open in response to binding of extracellular ATP. Each subunit contains a large extracellular ligand binding domain and two flanking transmembrane (TM) helices that form the pore, but the extent of gating motions of the TM helices is unclear. We probed these motions using ivermectin (IVM), a macrocyclic lactone that stabilizes the open state of P2X(4) receptor channels. We find that IVM partitions into lipid membranes and that transfer of the TM regions of P2X(4) receptors is sufficient to convey sensitivity to the lactone, suggesting that IVM interacts most favorably with the open conformation of the two TM helices at the protein-lipid interface. Scanning mutagenesis of the two TMs identifies residues that change environment between closed and open states, and substitutions at a subset of these positions weaken IVM binding. The emerging patterns point to widespread rearrangements of the TM helices during opening of P2X receptor channels.  相似文献   

12.
Control of P2X(2) channel permeability by the cytosolic domain   总被引:5,自引:0,他引:5       下载免费PDF全文
ATP-gated P2X channels are the simplest of the three families of transmitter-gated ion channels. Some P2X channels display a time- and activation-dependent change in permeability as they undergo the transition from the relatively Na(+)-selective I(1) state to the I(2) state, which is also permeable to organic cations. We report that the previously reported permeability change of rat P2X(2) (rP2X(2)) channels does not occur at mouse P2X(2) (mP2X(2)) channels expressed in oocytes. Domain swaps, species chimeras, and point mutations were employed to determine that two specific amino acid residues in the cytosolic tail domain govern this difference in behavior between the two orthologous channels. The change in pore diameter was characterized using reversal potential measurements and excluded field theory for several organic ions; both rP2X(2) and mP2X(2) channels have a pore diameter of approximately 11 A in the I(1) state, but the transition to the I(2) state increases the rP2X(2) diameter by at least 3 A. The I(1) to I(2) transition occurs with a rate constant of approximately 0.5 s(-1). The data focus attention on specific residues of P2X(2) channel cytoplasmic domains as determinants of permeation in a state-specific manner.  相似文献   

13.
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.  相似文献   

14.
Inhibitory interactions between 5-HT subtype 3 (5-HT(3)) and P2X receptors were characterized using whole cell recording techniques. Currents induced by 5-HT (I(5-HT)) and ATP (I(ATP)) were blocked by tropisetron (or ondansetron) and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, respectively. Currents induced by 5-HT + ATP (I(5-HT+ATP)) were only as large as the current induced by the most effective transmitter, revealing current occlusion. Occlusion was observed at membrane potentials of -60 and 0 mV (for inward currents), but it was not present at +40 mV (for outward currents). Kinetic and pharmacological properties of I(5-HT+ATP) indicate that they are carried through 5-HT(3) and P2X channels. Current occlusion occurred as fast as activation of I(5-HT) and I(ATP), was still present in the absence of Ca(2+) or Mg(2+), after adding staurosporine, genistein, K-252a, or N-ethylmaleimide to the pipette solution, after substituting ATP with proportional to, beta-methylene ATP or GTP with GTP-gamma-S in the pipette, and was observed at 35 degrees C, 23 degrees C, and 8 degrees C. These results are in agreement with a model that considers that 5-HT(3) and P2X channels are in functional clusters and that these channels might directly inhibit each other.  相似文献   

15.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

16.
P2X receptors are ATP-gated ion channels involved in many physiological functions, and determination of ATP-recognition (AR) of P2X receptors will promote the development of new therapeutic agents for pain, inflammation, bladder dysfunction and osteoporosis. Recent crystal structures of the zebrafish P2X4 (zfP2X4) receptor reveal a large ATP-binding pocket (ABP) located at the subunit interface of zfP2X4 receptors, which is occupied by a conspicuous cluster of basic residues to recognize triphosphate moiety of ATP. Using the engineered affinity labeling and molecular modeling, at least three sites (S1, S2 and S3) within ABP have been identified that are able to recognize the adenine ring of ATP, implying the existence of at least three distinct AR modes in ABP. The open crystal structure of zfP2X4 confirms one of three AR modes (named AR1), in which the adenine ring of ATP is buried into site S1 while the triphosphate moiety interacts with clustered basic residues. Why architecture of ABP favors AR1 not the other two AR modes still remains unexplored. Here, we examine the potential role of inherent dynamics of head domain, a domain involved in ABP formation, in AR determinant of P2X4 receptors. In silico docking and binding free energy calculation revealed comparable characters of three distinct AR modes. Inherent dynamics of head domain, especially the downward motion favors the preference of ABP for AR1 rather than AR2 and AR3. Along with the downward motion of head domain, the closing movement of loop139–146 and loop169–183, and structural rearrangements of K70, K72, R298 and R143 enabled ABP to discriminate AR1 from other AR modes. Our observations suggest the essential role of head domain dynamics in determining AR of P2X4 receptors, allowing evaluation of new strategies aimed at developing specific blockers/allosteric modulators by preventing the dynamics of head domain associated with both AR and channel activation of P2X4 receptors.  相似文献   

17.
Adenosine triphosphate (ATP) and other nucleotides can be released in the central and peripheral nervous systems and act as neurotransmitters/neuromodulators. They can activate G-protein coupled receptors and ligand-gated ion channels, which are present throughout the central nervous system (CNS). P2X2 is one of seven known ion channels gated by ATP, and is characterized by having two transmembrane domains, a large extracellular loop and intracellular N- and C-termini. Recently, work from several laboratories has shown that neurotransmitter receptors can interact with other proteins thereby changing their functional attributes. More specifically, it was demonstrated that P2X2 binds beta-tubulin. Our goal was to investigate this interaction, by comparing P2X2 with a naturally occurring splicing variant named P2X2b. These isoforms differ in their C-terminal regions which contain the proposed beta-tubulin-binding domain. Indeed we were able to demonstrate that only the long variant P2X2 binds beta-tubulin I in various biochemical assays. In addition, this interaction can be direct since it also occurred when the P2X2 C-terminus was exposed to purified brain tubulin. When expressed in heterologous cells, P2X2 interacted with beta-tubulin I while present on the outer membrane, as demonstrated by biotinylation of surface proteins. Therefore, the present data strongly support a functional interaction between an ATP-gated channel and the cytoskeleton. Moreover, we show a biochemical difference between the splicing alternatives that might account for novel distinct functional roles.  相似文献   

18.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

19.
The yeast VAMP-associated protein (VAP) homolog Scs2p is an endoplasmic reticulum (ER)/nuclear membrane protein that binds to an FFAT (diphenylalanine in an acidic tract) motif found in various lipid-metabolic proteins, including Opi1p, a negative regulator of phospholipid biosynthesis. Here, we show that Scs2p is a novel phosphoinositide-binding protein that can bind to phosphatidylinositol monophosphates and bisphosphates in vitro. The phosphoinositide-binding domain was assigned to the N-terminal major sperm protein (MSP) domain which also contains the FFAT-binding domain. When several lysine residues in the MSP domain were substituted for alanine, the resulting mutant Scs2 proteins lost the phosphoinositide-binding ability and failed to complement the inositol auxotrophy of an scs2 deletion strain. However, the mutant proteins still localized in the ER/nuclear membrane, in a similar manner to wild-type Scs2p. These results suggest the possibility that Scs2p activity is regulated by phosphoinositides to coordinate phospholipid biosynthesis in response to changes in phospholipid composition.  相似文献   

20.
P2X3 is one receptor of a family of seven ligand-gated ion channels responding to purines. Increasing evidence indicates its involvement in neuronal signaling and in pain. However, there is currently no selective inhibitor known for this subtype. In order to obtain such a specific inhibitor, a variety of antisense oligonucleotides (ASO) against rat P2X3 was tested, and dose-dependent, sequence-specific downregulation of the rat P2X3 receptor (expressed in a Chinese hamster ovary cell line [CHO-K1]) on the mRNA, protein, and functional levels was observed. Using real-time quantitative PCR, a dose-dependent downregulation of P2X3 mRNA by ASO, as compared with untreated and mismatch controls, was demonstrated. Subsequently, downregulation by the two most potent ASO was confirmed at the protein level by Western blot. Sequence specificity was shown by titration of mismatches to the original selected oligonucleotide, and this correlated with progressive loss of P2X3 inhibition. The functional response of the P2X3 receptor was examined using whole-cell voltage clamping. Upon application of 10 microM of a nonspecific agonist, alpha,beta-methylene-ATP (alphabeta meATP), pretreatment with increasing amounts of the most active ASO 5037 correlated with a decrease in depolarization. The ability to specifically downregulate the P2X3 receptor by ASO treatment will allow investigation of the biologic role of this receptor in neuronal tissues and eventually in in vivo models of chronic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号