首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In chicken Leghorn, blood flow volume speed (BF, laser-Doppler flowmetry) in the brain hemispheres and in liver was measured on days 10, 14, and 19 of embryogenesis and on day 4 after hatching (in experiments on late embryos and chickens, urethane narcosis was used). It was revealed, that initial BF in investigated organs was 2-fold lower than earlier measured in skeletal muscles. In the liver, low BF remained at all periods, but it grew 5-fold greater after hatching. In the brain hemispheres, the BF during this period grows gradually reaching 4-fold size in chickens. It was shown that blood stream increase in the brain was accompanied by uniform increase in anatomic lumen of internal carotid artery; thus settlement sizes of linear speed of blood flow and wall shear stress remain in it at the same level. Lumen extension of celiac artery during the observation period lags behind increases in a blood stream of in it that leads to increase in it of the named parameters.  相似文献   

2.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of their profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria by the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old fowl. At hatching, the lengths of capillaries are similar in both muscles, but as chicks grow, the proportion of longer (more than 600 microm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.  相似文献   

3.
The aim of this study is to measure the oxygen partial pressure (pO2) in developing chicken tissues, namely, in the cerebral hemispheres, liver, m. pectoralis, and m. gastrocnemius, and to estimate the correlation of pO2 with the earlier measured values (laser Doppler flowmetry) of volume blood flow (BF) in these organs. We have studied 10-, 15-, and 19-day-old embryos and 4-day-old chickens anesthetized with urethane. The pO2 has been measured in the surface layers of organs with a membrane amperometric Clark-type O2 electrode (cathode diameter of approximately 50 μm) placed in the center of the sensor unit (outer diameter of 3.4 mm). Noticeable distinctions between both the tissue pO2 values in different organs and the dynamics of their changes during the observation time have been recorded. The following differences are the most important: (1) the lowest pO2} {cm(and BF) is observed in the brain and, especially, in the liver of 10-day-old embryos; (2) in the subsequent period of embryogenesis, the pO2 in the brain increases 1.9-fold (BF also increases), falls 1.7-fold in m. pectoralis, and displays minor changes in the liver and m. gastrocnemius on the background of constant BF value in the liver and both muscles; and (3) after hatching, pO2 in the liver and m. pectoralis increases severalfold (BF increases too) but does not change in a statistically significant manner in the brain and m. gastrocnemius despite an increase in BF (more pronouncedly in the muscle). Two possible mechanisms underlying the changes in the tissue pO2 in developing chicken organs have been proposed: one is determined by the specific features of intracardiac blood flows and the other is associated with the oxyhemoglobin dissociation pattern in the blood capillary circulation in the organs, determined by the specific features in its oxidative metabolism.  相似文献   

4.
Thermogenic capabilities of red-winged blackbirds improve markedly during their 10-12-day nestling period, especially between day 5 and day 8. The time course of improvements may be determined by the maturation of skeletal muscles involved in shivering thermogenesis, particularly the pectoralis muscles. To test this hypothesis, morphological and biochemical changes in pectoral and leg muscles were measured in young and adult blackbirds. Both muscles grew disproportionately relative to body mass. The pectoralis consisted entirely of fast-twitch fibers, predominantly fast oxidative glycolytic. In contrast, the gastrocnemius muscle consisted of a mixture of slow and fast fibers (predominantly fast glycolytic). Although fiber composition was constant, both cross-sectional area and density of fibers increased with age in both muscles. Catabolic capacities of the pectoralis increased significantly (approximately 7-8-fold) throughout the nestling period, most abruptly after day 3 (citrate synthase, CS) or day 4 (3-hydroxacyl-CoA-dehydrogenase, HOAD). Myofibrillar ATPase activities in the pectoralis were initially low, but increased after day 5. Further increases in CS and myofibrillar ATPase activities occurred in the pectoralis after fledging. CS and HOAD activities in the leg were much lower, but myofibrillar ATPase activities were remarkably similar in the two muscles, differing only in adults. These results are consistent with the hypothesis that the development of endothermy is dependent on the morphological and biochemical maturation of skeletal muscles important in thermogenesis.  相似文献   

5.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

6.
The differentiation of troponin (TN) in cardiac and skeletal muscles of chicken embryos was studied by indirect immunofluorescence microscopy. Serial sections of embryos were stained with antibodies specific to TN components (TN-T, -I, and -C) from adult chicken cardiac and skeletal muscles. Cardiac muscle began to be stained with antibodies raised against cardiac TN components in embryos after stage 10 (Hamburger and Hamilton numbering, 1951, J. Morphol. 88:49-92). It reacted also with antiskeletal TN-I from stage 10 to hatching. Skeletal muscle was stained with antibodies raised against skeletal TN components after stage 14. It also reacted with anticardiac TN-T and C from stage C from stage 14 to hatching. It is concluded that, during embryonic development, cardiac muscle synthesizes TN-T and C that possess cardiac- type antigenicity and TN-I that has antigenic determinants similar to those present in cardiac as well as in skeletal muscles. Embryonic skeletal muscle synthesizes TN-I that possesses antigenicity for skeletal muscle and TN-T and C which share the antigenicities for both cardiac and skeletal muscles. Thus, in the development of cardiac and skeletal muscles, a process occurs in which the fiber changes its genomic programming: it ceases synthesis of the TN components that are immunologically indistinguishable from one another and synthesizes only tissue-type specific proteins after hatching.  相似文献   

7.
Effects of embryonic imprinting with growth hormone (GH) on growth and myosin heavy chain (MyHC) isoforms in pectoralis muscle were determined by injecting turkey embryos with ovine growth hormone (oGH) at a dose of 10 μg three times a day. Injections were made on days 20 and 26 (Treatment 1), days 14 and 20 (Treatment 2) or days 14 and 26 (Treatment 3) of incubation. In Treatement 1 poults, plasma GH concentrations were elevated at 3 days posthatch and in Treatment 3 poults, plasma GH concentrations were elevated at 15 days posthatch, as compared to control poults. At 4 weeks of age, in males, body weights, shank length and weights of pectoralis, gastrocnemius and sartorius muscles were increased in Treatment 3, and in females, body weights, shank length and weights of gastrocnemius muscle of female turkeys were increased in Treatment 1. The growth rate of female turkeys from 4 weeks through 16 weeks was increased by Treatment 1. Treatment 1 resulted in a delay in the transition from the embryonic MyHC isoform to the neonatal MyHC isoform and to the adult MyHC isoform. Treatment 3 induced an earlier appearance of the adult MyHC isoform. No effects on body and muscle growth and MyHC isoforms were observed by Treatment 2.  相似文献   

8.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of mitochondrial profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria across the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old chicks. At hatching, the length of capillaries is similar in both muscles, but as chicks grow, the proportion of longer (more than 600 µm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 135–144.Original Russian Text Copyright © 2005 by Belichenko, Korostyshevskaya, Maksimov, Shoshenko.  相似文献   

9.
Studies have been made on immunoreactive insulin (IRI) and insulin-like activity (ILA) in the blood serum of chick embryos (from the 10th day of incubation), chicks and adult hens up to 1 year old. It was shown that IRI content of embryonic blood is relatively low and remains approximately constant during incubation. During postnatal ontogenesis, the level of IRI increases, the increase being most significant at the 1st day after hatching and between the 2nd and the 5th months. With respect to IRI level, 5-month chicks are similar to adult hens. Being assayed by the method of isolated epididymal rat fat, ILA was not found in the blood serum of chick embryos. It was observed in all test samples only from the 30th day after hatching. It is suggested that at this period of postnatal life, some factors are formed in the blood which increase ILA without changes of the insulin content of the blood. After the 30th day, no evident shifts were observed in ILA, although it reached maximum in adult hens. By absolute values, ILA of the blood in chicks was several times higher than the corresponding levels of IRI.  相似文献   

10.
Germline chimeric chickens were produced by the transfer of primordial germ cells (PGCs) or blastoderm cells. The hatchability of eggs produced by transfer of exogenous PGCs is usually low. The purpose of the present study was investigated to express (3-hydroxyacyl CoA dehydrogenase) 3HADH which is a limiting enzyme in the beta-oxidation of fatty acids for hatching energy. Manipulations of both donor and recipient eggshells were as follows. A window approximately 10 mm in diameter was opened at the pointed end of the eggs at stage 12–15 days incubation. Donor PGCs, taken from the blood vessels of donor embryos from fertilized eggs at the same stage of development, were injected into the blood vessels of recipient embryos. The muscles of chicks in the eggs with transferred PGCs were removed after 20 days of incubation. A cDNA was prepared from the total RNA. The expression of 3HADH in the manipulated embryos was investigated using real-time PCR analysis. Real-time PCR analysis showed that expression of 3HADH was reduced in the muscles of manipulated embryos.  相似文献   

11.
The accuracy of muscle blood flow measurement by the 133Xe clearance method (QXe) was assessed against direct venous outflow (Qv) and microsphere trapping flow (Q mu) determinations in isolated perfused dog gastrocnemius both at rest and during graded stimulation [O2 consumption (VO2) up to 12 ml X 100 g-1 X min-1] and in the gastrocnemius, vastus lateralis, and triceps of intact dogs at rest and while running on a treadmill at varied speeds up to maximum VO2. In 29 measurements performed in 11 isolated muscles, Q mu was in good agreement with Qv at rest and at all stimulation levels (Q mu/Qv = 1.0; r = 0.98). 133Xe clearance yielded much lower blood flows than the venous outflow and the microsphere trapping methods. In 43 measurements in 11 muscles, the mean QXe/Qv ratio was 0.57 +/- 0.03 (SE), independent of blood flow. Similarly, in 65 measurements in 2 intact dogs, the mean QXe/Q mu ratio in all tested muscles was 0.49 +/- 0.02 (SE), independent of blood flow. These results show that the 133Xe clearance method considerably underestimates blood flow in dog muscles.  相似文献   

12.
Lactate concentration in blood, liver, yolk, amniotic and allantoic fluid and blood pyruvate was measured in embryos in the final week of incubation. Blood lactate was low up to day 18. The blood lactate/pyruvate ratio and liver lactate increased from day 19 until hatching. From day 14 to 19, lactate concentration in amniotic fluid remained constant, it increased 2-fold in yolk and 10-fold in allantoic fluid. There was only a 48% net accumulation of lactate in the three cavities. In conclusion, fowl embryos do not turn to anaerobic metabolism until the hatching process starts on day 19.  相似文献   

13.
Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90-220 microm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10(-9) to 10(-4) M), adenosine (ADO, 10(-10) to 10(-4) M), and sodium nitroprusside (SNP, 10(-10) to 10(-4) M) were evaluated at a constant intraluminal pressure of 60 cmH(2)O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.  相似文献   

14.
Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without and with theophylline (P < 0.001). Adenosine receptor blockade did not have any effect on mean bulk BF or BF heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing exercise intensity in the QF muscle group. Adenosine seems to play a role in muscle BF heterogeneity even in the absence of changes in bulk BF at low and moderate one-leg intermittent isometric exercise intensities.  相似文献   

15.
To compare the activity of lower extremity muscles during land walking (LW), water walking (WW), and deep-water running (DWR), 9 healthy young subjects were tested at self-selected low, moderate, and high intensities for 8 sec with two repetitions. Surface EMG electrodes were placed on the tibialis anterior (TA), soleus (SOL), medial gastrocnemius (GAS), rectus femoris (RF), and biceps femoris (BF). During DWR, the SOL and GAS activities were lower than LW and WW. The BF activities were higher during DWR than LW and WW. It was considered that the lower activity of SOL and GAS depended on water depth, and higher activity of BF occurred by greater flexion of the knee joint or extension of the hip joint during exercise.  相似文献   

16.
In 10 guinea pigs the gastrocnemius muscles on one side were tenotomised. By the tenotomy the daily work load of the gastorcnemius muscle was lowered in the operated leg ("untrained muscles") and increased in the control leg ("trained muscles"). Before and several weeks after the operation blood flow was measured in the lower legs (by segmental plethysmography) and oxygen pressure was measured in the gastrocnemius muscles (by micro-Pt-electrodes) of the anesthetized animals. 4 to 6 weeks after the operation statistically significant differences between the two extermities were noted: In the operated leg the mean pO2-value was 33%lower (P is less than 0.001) and the mean blood flow value 46% higher (P is less than 0.001). These differences could be explained by a reduced number of perfused capillaries in the untrained muscles (= non uniform blood flow distribution).  相似文献   

17.
It has previously been shown that prolonged exercise of moderate intensity reduces the content of ceramide in each type of skeletal muscle. This was accompanied by a reduction in the activity of neutral, Mg++-dependent sphingomyelinase (the major enzyme responsible for ceramide formation from sphingomyelin) in the soleus and red gastrocnemius, but not in the white gastrocnemius (A. Dobrzyń and J. Górski, Am. J. Physiol.: Endorcinol. Metab. 282: E277 - E285, 2002). No other data on regulation of ceramide metabolism in contracting muscles are available. The aim of the present study was to examine the content of sphinganine (a key precursor of ceramide on the de novo synthesis route) and the content of sphingosine (the main product of ceramide catabolism) in different skeletal muscle types after two kinds of acute exercise. The experiments were carried out on 30 male Wistar rats, 250 - 280 g of body weight. The rats were divided equally into three groups: 1 - control, 2 - run until exhaustion (1200 m/h, +10 degree incline), 3 - a group in which the sciatic nerve was stimulated 10 min with tetanic pulses (60 pulses/min). Samples were taken of the soleus and of the red and white section of the gastrocnemius. These muscles are composed mostly of the slow-twitch oxidative, fast-twitch oxidative-glycolytic and fast-twitch glycolytic fibers, respectively. Lipids were extracted with chloroform/methanol. Sphinganine and sphingosine were quantified by high-performance liquid chromatography. At rest, the content of sphinganine in the soleus was higher than in the red gastrocnemius (p < 0.05), and in the latter, it was higher than in the white gastrocnemius (p < 0.01). Prolonged exercise increased the content of sphinganine approximately 6-fold in each muscle. The resting content of sphingosine in the soleus and in the red gastrocnemius was similar--higher than in the white gastrocnemius (p < 0.001 and p < 0.01, respectively). The content of sphingosine increased over 3-fold in the soleus and nearly 2-fold in the red and white sections of the gastrocnemius. Stimulation of the sciatic nerve increased the content of both compounds approximately 2-fold in each muscle. We conclude that acute exercise increases both de novo synthesis and catabolism of ceramide in skeletal muscles. Accumulation of sphingosine in contracting muscles may contribute to the development of fatigue.  相似文献   

18.
Summary Fiber composition, and glycolytic and oxidative capacities of the pectoralis, gastrocnemius, and cardiac muscles from active and hibernating little brown bats (Myotis lucifugus) was studied. The data were used to test two hypotheses: First, since hibernating bats maintain the capability of flight and make use of leg muscles to maintain a roosting position all winter, the fiber composition of the pectoralis and gastrocnemius muscles should not change with season. Second, we tested the hypothesis of Ianuzzo et al. (in press), who propose that the oxidative potential of mammalian cardiac muscle should increase with increasing heart rate while glycolytic potential should not. Our results indicate that the fiber composition of the pectoralis muscle was uniformly fast-twitch oxidative (FO)_ regardless of the time of year, as predicted. However, the gastrocnemius muscle exhibited a change in FO composition from 83% in active to 61% in hibernating animals. Contrary to the variable change in histochemical properties with metabolic state, a trend of reduced maximal oxidative (CS) and glycolytic (PFK) potential during hibernation in both flight and leg muscles was apparent. The oxidative potential of flight and leg muscles decreased by 15.2% and 56.5%, respectively, while the glycolytic potential of the same muscles decreased by 23.5% and 60.5%, respectively. As predicted, the glycolytic potential of cardiac muscle remained constant between active and hibernating bats, although there was a significant decrease (22.0%) in oxidative potential during hibernation.Abbreviations FO fast-twitch oxidative - FG fast-twitch glycolytic - SO slow-twitch oxidative - Vmax maximal enzyme activity - PFK phosphofructokinase - CS citrate synthase  相似文献   

19.
Anatomical and histological investigations of large arteries feeding head, extremities and chorioallantoic membrane were carried out in 11-, 14-, and 18-day old chicken embryos and in 1- and 40-day old Shaver chickens. The numerical relationships between an arterial diameter and a body mass; a vessel length, its external diameter and a wall thickness, were determined. Our data demonstrate that walls of large arteries in the anterior and the posterior parts of the chicken embryo body are different in quantity, composition, and maturity of their tissue components, determining the lumen size and hemodynamic conditions in the blood bed. The vessel growth velocity have been estimated. Ontogenic widening of gastrocnemius and pectoralis muscle capillary beds and of their supplying trunks, was compared. Calculations using the data on organ portions of cardiac output in chicken embryos show the maintenance of similar liner blood flow velocities in different large arteries suring ontogenesis.  相似文献   

20.
The development of the physicochemical properties of the cerebrospinal fluid (CSF) was studied in chick embryos from the 9th day of incubation up to hatching. Some of these properties were compared with the corresponding blood or blood plasma properties. During the second half of incubation the CSF pressure rose from 13.2 plus or minus 0.18 mm H2O in 9-day-old embryos to 80.7 plus or minus 0.48 mm H2O just prior to hatching. The critical stages of this development were the 13th to 15th and the 19th to 21st day of incubation. In 13- and 15-day-old embryos, CSF pressure fell sharply after the intracerebral injection of ouabain, but in 19-day embryos it was unaffected. Except for the 15th and 19th incubation day, the CSF pH was always lower than the plasma pH. From the 11th day of incubation up to hatching, the CSF pH fell from 7.36 plus or minus 0.002 to 7.2 plus or minus 0.005. On the 11th and 13th day, specific CSF resistance was higher than plasma resistance, whereas from the 17th incubation day it was significantly lower than the plasma value. During the second half of incubation, specific CSF resistance fell from 1.059 times 10(6) to 0.824 times 10(6) omega mm.m(-1). A difference between the D.C. potential of the venous blood and the CSF appeared for the first time in 15-day-old embryos, the CSF being negative in relation to the blood. By the end of the incubation period this potential difference rose to 10.82 times 0.07 mv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号