首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Filamentous benthic marine cyanobacteria are a prolific source of structurally unique bioactive secondary metabolites. A total of 12 secondary metabolites, belonging to the mixed polyketide–polypeptide structural class, were isolated from the marine cyanobacterium, Lyngbya majuscula, and were tested to determine if they showed activity against barnacle larval settlement. The assays revealed four compounds, dolastatin 16 (1), hantupeptin C (4), majusculamide A (10), and isomalyngamide A (12), that showed moderate to potent anti-larval settlement activities, with EC50 values ranging from 0.003 to 10.6 μg ml?1. In addition, field testing conducted over a period of 28 days (using the modified Phytagel? method) based on the cyanobacterial compound, dolastatin 16, showed significantly reduced barnacle settlement as compared to controls at all the concentrations tested. The results of this study highlight the importance of marine cyanobacteria as an underexplored source of potential environmentally friendly antifoulants.  相似文献   

2.
The effects of external calcium concentrations on biosynthesis of ginsenoside Rb1 and several calcium signal sensors were quantitatively investigated in suspension cultures of Panax notoginseng cells. It was observed that the synthesis of intracellular ginsenoside Rb1 in 3-day incubation was dependent on the medium Ca2+ concentration (0-13 mM). At an optimal Ca2+ concentration of 8 mM, a maximal ginsenoside Rb1 content of 1.88 +/- 0.03 mg g(-1) dry weight was reached, which was about 60% and 25% higher than that at Ca2+ concentrations of 0 and 3 mM, respectively. Ca2+ feeding experiments confirmed the Ca2+ concentration-dependent Rb1 biosynthesis. In order to understand the mechanism of the signal transduction from external Ca2+ to ginsenoside biosynthesis, the intracellular content of calcium and calmodulin (CaM), activities of calcium/calmodulin-dependent NAD kinase (CCDNK) and calcium-dependent protein kinase (CDPK), and activity of a new biosynthetic enzyme of ginsenoside Rb1, i.e., UDPG:ginsenoside Rd glucosyltransferase (UGRdGT), in the cultured cells were all analyzed. The intracellular calcium content and CCDNK activity were increased with an increase of external Ca2+ concentration within 0-13 mM. In contrast, the CaM content and activities of CDPK and UGRdGT reached their highest levels at 8 mM of initial Ca2+ concentration, which was also optimal to the ginsenoside Rb1 synthesis. A similar Ca2+ concentration-dependency of the intracellular contents of calcium and CaM and activities of CCDNK, CDPK, and UGRdGT was confirmed in Ca2+ feeding experiments. Finally, a possible model on the effect of external calcium on ginsenoside Rb1 biosynthesis via the signal transduction pathway of CaM, CDPK, and UGRdGT is proposed. Regulation of external Ca2+ concentration is considered a useful strategy for manipulating ginsenoside Rb1 biosynthesis by P. notoginseng cells.  相似文献   

3.
Antifouling coatings based on organotin compounds possess a world-wide threat to the environment and due to growing restrictions there is a need for environmentally safe antifouling systems. TNO is working on the development of novel antifouling systems based on secondary metabolites from sponges. Screening for natural antifoulants is conducted using a settlement assay with cyprid larvae of the barnacle Balanus amphitrite Darwin. Forty-four sponges (35 species) were collected from around the island of Curaçao in the Caribbean and settlement assays were performed with the ethyl-acetate extracts. Thirty-one extracts significantly inhibited cyprid settlement at 0.1 mg ml−1, of which 22 significantly inhibited settlement at 0·01 mg ml−1.  相似文献   

4.
5.
Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds.  相似文献   

6.
Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds.  相似文献   

7.
Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species, Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 10(3)-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10 mM zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA less than Cs less than Li less than Tris less than Rb less than Na less than K for the potassium channel.  相似文献   

8.
9.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

10.
Conditions for studying protein phosphorylation in intact pancreatic islets were developed in order to study the effects of glucose and other effectors. Islets were incubated in Krebs-Ringer bicarbonate buffer containing 5 mM malate and 5 mM pyruvate (metabolic fuels that are not insulin secretagogues) for 150 min to permit incorporation of 32Pi into islet phosphate pools. Glucose or other effectors were then added, and the incubation was terminated after 10 to 30 min. Glucose increased phosphorylation of four islet peptides with molecular weights of 20,000, 33,000, 43,000 and 57,000. The calcium channel blockers, verapamil and D-600, inhibited phosphorylation of each of the four proteins, and trifluoperazine inhibited phosphorylation of the proteins with molecular weights of 20,000 and 57,000. The results indicate that glucose-induced insulin release may be mediated in part by protein phosphorylation, and that calcium may act as an intracellular messenger in coupling the glucose stimulus to the secretory process.  相似文献   

11.
Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (approximately 100 nM), while the uptake of propidium iodide was absent. This suggests that increases in intracellular calcium were not because of plasma membrane electroporation. nsPEF and the purinergic agonist UTP induced calcium mobilization in the presence and absence of extracellular calcium with similar kinetics and appeared to target the same inositol 1,4,5-trisphosphate- and thapsigargin-sensitive calcium pools in the endoplasmic reticulum. For cells exposed to either nsPEF or UTP in the absence of extracellular calcium, there was an electric field-dependent or UTP dose-dependent increase in capacitative calcium entry when calcium was added to the extracellular media. These findings suggest that nsPEFs, like ligand-mediated responses, release calcium from similar internal calcium pools and thus activate plasma membrane calcium influx channels or capacitative calcium entry.  相似文献   

12.
Ammonium and methylammonium transport in Rhodobacter sphaeroides.   总被引:2,自引:2,他引:0       下载免费PDF全文
Rhodobacter sphaeroides maintained intracellular ammonium pools of 1.1 to 2.6 mM during growth in several fixed nitrogen sources as well as during diazotrophic growth. Addition of 0.15 mM NH4+ to washed, nitrogen-free cell suspensions was followed by linear uptake of NH4+ from the medium and transient formation of intracellular pools of 0.9 to 1.5 mM NH4+. Transport of NH4+ was shown to be independent of assimilation by glutamine synthetase because intracellular pools of over 1 mM represented NH4+ concentration gradients of at least 100-fold across the cytoplasmic membrane. Ammonium pools of over 1 mM were also found in non-growing cell suspensions in nitrogen-free medium after glutamine synthetase was inhibited with methionine sulfoximine. In NH4+-free cell suspensions, methylammonium (14CH3NH3+) was taken up rapidly, and intracellular concentrations of 0.4 to 0.5 mM were maintained. The 14CH3NH3+ pool was not affected by methionine sulfoximine. Unlike NH4+ uptake, 14CH3NH3+ uptake in nitrogen-free cell suspensions was repressed by growth in NH4+. These results suggest that R. sphaeroides may produce an NH4+-specific transport system in addition to the NH4+/14CH3NH3+ transporter. This second transporter is able to produce normal-size NH4+ pools but has very little affinity for 14CH3NH3+ and is not repressed by growth in high concentrations of NH4+.  相似文献   

13.
We have examined the effects of extracellular and intracellular Ca2+ concentrations upon basal and insulin-stimulated 2-deoxyglucose uptake in isolated rat adipocytes. In the absence of extracellular Ca2+, both basal and insulin-stimulated glucose uptake were significantly reduced. Insulin-stimulated glucose transport was optimal at 1 and 2 mM Ca2+. Further increases in extracellular Ca2+ concentration (3 mM) significantly diminished insulin-stimulated glucose uptake. When intracellular Ca2+ concentrations were augmented by ionomycin (1 microM), insulin-stimulated glucose uptake was significantly reduced at extracellular Ca2+ concentrations of 2 and 3 mM. The levels of intracellular free Ca2+ concentrations were then measured with Ca2+ indicator fura-2. The correlation between the levels of intracellular free Ca2+ and the magnitude of insulin-stimulated glucose uptake revealed that the optimal effect of insulin is observed at Ca2+ levels between 140 and 370 nM. At both extremes outside of this window, both low and high levels of intracellular Ca2+ result in diminished cellular responsiveness to insulin. These data suggest that intracellular calcium concentrations may exert a dual role in the regulation of cellular sensitivity to insulin. First, there must exist a minimal concentration of intracellular calcium to promote insulin action. Second, increased levels of intracellular calcium may provide a critical signal for diminution of insulin action.  相似文献   

14.
The increasing needs for environmental friendly antifouling coatings have led to investigation of new alternatives for replacing copper and TBT-based paints. In this study, results are presented from larval settlement assays of the barnacle Amphibalanus (= Balanus) amphitrite on planar, interdigitated electrodes (IDE), having 8 or 25 mum of inter-electrode spacing, upon the application of pulsed electric fields (PEF). Using pulses of 100 ms in duration, 200 Hz in frequency and 10 V in pulse amplitude, barnacle settlement below 5% was observed, while similar IDE surfaces without pulse application had an average of 40% settlement. The spacing between the electrodes did not affect cyprid settlement. Assays with lower PEF amplitudes did not show significant settlement inhibition. On the basis of the settlement assays, the calculated minimum energy requirement to inhibit barnacle settlement is 2.8 W h m(-2).  相似文献   

15.
The effects of a synthetic form of Atrial Natriuretic Factor (ANF) on spontaneously hypertensive rat aortic smooth muscle were investigated using either an alpha-adrenoceptive agonist (phenylephrine) or an agent which partially depolarized the plasma membrane (20mM KCl) as a contractile agent. The relaxant response was studied under conditions resembling normal physiological calcium ion levels (1.5mM) as well as over a range of calcium ion concentrations (0.1-2.5mM). The results demonstrate a hyporesponsiveness of hypertensive aorta to vasorelaxation induced by synthetic ANF, which is more apparent when the tissue is contracted with KCl. The results also suggest that ANF, which has been shown previously to inhibit intracellular and receptor operated calcium channel mobilization only, may additionally work through a mechanism which is related to the voltage induced calcium flux across the membrane, which also is inhibited less in hypertensive smooth muscle.  相似文献   

16.
In human platelets thrombin-induced calcium release from intracellular stores, the consequent influx of extracellular calcium, as well as their role in the aggregation and ATP-secretion reactions were examined. In indo-1-loaded platelets intracellular calcium release was studied in the presence of excess EGTA in the incubation medium, while calcium influx was followed after a rapid repletion of external calcium. After thrombin-stimulation both calcium release and calcium influx produced about the same peak levels of cytoplasmic free calcium but in the first case it was only a transient response, while in the latter one a sustained calcium signal was observed. Increased calcium influx could be evoked for several minutes after the addition of thrombin, it was selectively inhibited by Mg2+ (20 mM) and Ni2+ (1 mM) ions, by neomycin and by PCMB, a non-penetrating SH-group reagent. This calcium influx was practically insensitive to organic calcium channel blockers. Thrombin-induced platelet aggregation was only partial in the absence of external calcium, even if excess magnesium was present in the media, while the aggregation response became complete if external calcium was repleted. A significantly reduced aggregation could be seen in calcium-containing media if calcium influx was selectively inhibited. Platelet ATP-secretion under the same conditions did not depend on external calcium or on calcium influx. These data indicate that in thrombin-stimulated platelets the opening of specific plasma membrane calcium channels can be selectively modulated and these channels play a major role in the development of a full-scale aggregation.  相似文献   

17.
Spontaneous DNA repair in peripheral blood mononuclear cells (PBMC) has been recently described. The aim of this study was to evaluate whether spontaneous DNA repair is Ca(2+)-dependent, as in vitro-stimulated DNA repair. Spontaneous DNA repair in PBMC was measured in a 1mM Ca2+ medium. The effect of extracellular Ca2+ chelation by EGTA, intracellular Ca2+ chelation by bapta-AM, and Ca2+ loading by the ionophore A23187 was examined. The signal transduction pathway was evaluated by inhibiting protein tyrosine kinase with genistein, calmodulin with W7, and calcineurin with cyclosporin A and tacrolimus. Extracellular Ca2+ chelation had no effect on spontaneous DNA repair, while both intracellular chelation and calcium overloading inhibited the DNA repair. Inhibition of protein tyrosine kinase, calmodulin or calcineurin reduced DNA repair. In conclusion, spontaneous DNA repair is mainly Ca(2+)-dependent at a narrow range of intracellular Ca2+ concentrations. The signal transduction cascade includes protein tyrosine kinase, calmodulin, and calcineurin.  相似文献   

18.
Li X  Dobretsov S  Xu Y  Xiao X  Hung OS  Qian PY 《Biofouling》2006,22(3-4):201-208
Modern antifouling coatings use heavy metals and toxic organic molecules to prevent biofouling, the undesirable growth of marine organisms on man-made substrata. In an ongoing survey of deep-sea microorganisms aimed at finding low toxic antifouling metabolites, an actinomycete bacterium was isolated from the Pacific sediment at the depth of about 5000 m. The bacterium was closely related to Streptomyces fungicidicus (99% similarity) according to 16S ribosomal RNA sequence information. The spent culture medium of this bacterium inhibited barnacle larval attachment. Bioassay-guided fractionation was employed to isolate antifouling compounds. The ethyl acetate extract was fractionated by using an open silica gel column. Active fractions were further purified on a HPLC C18 column. Five diketopiperazines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro), and cyclo-(L-Leu-L-Val) were isolated for the first time from a deep sea bacterium, and the structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and mass spectrometry. The pure diketopiperazines were tested for antilarval activity using the barnacle Balanus amphitrite. Effective concentrations that inhibited 50% larval attachment (EC50) after 24 h ranged from 0.10- 0.27 mM. The data suggest that diketopiperazines and other compounds from deep-sea bacteria may be used as novel antifoulants.  相似文献   

19.
A rise in intracellular calcium is the predominant signal that leads to the activation of the contractile machinery in gastrointestinal smooth muscle. The primary sources of activating calcium are illustrated in Fig. 2. Voltage- and peptide-mediated release of intracellular calcium contribute to activation of some gastrointestinal smooth muscles. However, the primary source of activating calcium appears to be an influx of calcium across the plasma membrane. The degree of modulation of electrical activity by peptides varies depending upon the region of the gastrointestinal tract studied. Second messenger systems are undoubtly involved in the transduction pathway for receptor-mediated changes in ion channel activity in gastrointestinal smooth muscle. However, in comparison to other excitable cell types, little is known about the coupling mechanisms whereby peptide-receptor binding alters ion channel activity in gastrointestinal smooth muscle. This represents one of the challenging areas to be studied in the field of gastrointestinal smooth muscle. One disease in which a better appreciation of the regulation of ion channel activity could lead to therapeutic benefit is irritable bowel syndrome. A coupling of smooth muscle electrical activity to hypermotility in irritable bowel syndrome has been reported. CCK increases the level of spike activity which triggers hypermotility [40]. It would follow that inhibition of calcium influx should reduce spiking and, therefore, hypermotility. In fact, the calcium channel blockers nifedipine and nicardipine have been shown to decrease colonic motility in irritable bowel syndrome patients [62-64]. As our understanding of gastrointestinal smooth muscle ion channels expands, development of a gastrointestinal selective calcium channel blocker may be possible. This class of agents would be effective in the treatment of irritable bowel syndrome and potentially other peptide-related spastic smooth muscle disorders.  相似文献   

20.
The muscle relaxant dantrolene has been widely used in signal transduction studies as an inhibitor of intracellular calcium release. However, in vivo studies have shown that the drug may inhibit steroidogenesis by a mechanism which is distinct from its effects on calcium mobilization. Using freshly isolated cells and mitochondria from the outermost regions of bovine adrenal cortex we have shown that dantrolene (0.2 mM) significantly inhibits steroid synthesis stimulated by either angiotensin II (AII) or by addition of various precursors. Our results suggest that dantrolene inhibits the rate-limiting steps of adrenocortical steroidogenesis, i.e. the intramitochondrial conversion of cholesterol to pregnenolone (for both aldosterone and cortisol) and the conversion of corticosterone to aldosterone (for aldosterone), by a mechanism independent from its known effects on calcium release. A possible alternative mechanism may involve direct inhibition of cytochrome P450-dependent hydroxylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号