首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Granivory is an important interaction in the arid and semi-arid zones of the world, since seeds form an abundant and nutritious resource in these areas. While species of the genus Pogonomyrmex have been studied in detail as seed predators, their impact on seed abundance in the soil has not yet been explored in sufficient depth. We studied the impact of the harvesting activities of the ant Pogonomyrmex barbatus on seed abundance in the soil of the Zapotitlán valley, Mexico. We found that P. barbatus activity significantly impacts the abundance of seeds in the soil, which is lower in the sites where P. barbatus forages than it is in sites with no recorded foraging. We also found that P. barbatus distributes intact seeds of three tree species, two of which are nurse plants, and could consequently be promoting the establishment of these species. Using tools derived from graph theory, we observed that the ant-seed interactions exhibit a nested pattern; where more depredated seed species seem to be the more spatially abundant in the environment. This study illustrates the complex foraging ecology of the harvester ant P. barbatus and elucidates its effect on the soil seed bank in a semi-arid environment.  相似文献   

2.
Ants are dominant members of many terrestrial ecosystems and are regarded as indicators of environmental changes. However, little is known about the effects of invasive alien plants on ant populations, particularly as regards the density, spatial distribution and size of ant colonies, as well as their foraging behaviour. We addressed these questions in a study of grassland ant communities on five grasslands invaded by alien goldenrods (Solidago sp.) and on five non-invaded grasslands without this plant. In each grassland, seven 100 m2 plots were selected and the ant colonies counted. Ant species richness and colony density was lower in the plots on the invaded grasslands. Moreover, both of these traits were higher in the plots near the grassland edge and with a higher number of plant species in the grasslands invaded by goldenrods but not in the non-invaded ones. On average, ant colony size was lower on the invaded grasslands than the non-invaded ones. Also, ant workers travelled for longer distances to collect food items in the invaded areas than they did in the non-invaded ones, even after the experimental removal of some ant colonies in order to exclude the effect of higher colony density in the latter. Our results indicate that invasive alien goldenrods have a profound negative effect on grassland ant communities which may lead to a cascade effect on the whole grassland ecosystem through modification of the interactions among species. The invasion diminishes a major index of the fitness of ants, which is a colony’s size, and probably leads to increased foraging effort of workers. This, in turn, may have important consequences for the division of labour and reproductive strategies within ant colonies.  相似文献   

3.
Stomodeal trophallaxis plays a major role in ant colony nutrition and communication. While the rate of food distribution at the individual level (worker to worker) is rapid, factors affecting the rate of food distribution at the colony level remain poorly understood. We used the odorous house ant, Tapinoma sessile (Say), as a model species to investigate the factors affecting the rate of spread of liquid carbohydrate food throughout a colony. To track the movement of the food we used protein marking and double antibody sandwich enzyme-linked immunosorbent assay, DAS-ELISA. Increasing colony size while keeping the number of donor workers constant significantly decreased the number of individuals testing positive for the marker. After 8 h of trophallactic interactions with ten donors, 92 ± 5% of recipient workers tested positive in a colony of 125 and 38 ± 5% tested positive in a colony of 1,000. Interestingly, as colony size increased and the percentage of workers testing positive decreased, the proportion of workers actually receiving food increased. Food originating from a single donor fed approximately 12 individuals in colonies comprised of 125 recipients and approximately 38 individuals in colonies comprised of 1,000 recipients. Thus, the per capita consumption of food decreased as colony size increased, most likely because the amount of food reaching the colony was limited. Increasing the number of donors while keeping colony size constant significantly increased the number of recipient ants testing positive for the marker. As the number of donor workers doubled, the percentage of recipients testing positive more than doubled suggesting that the number of individuals receiving food increases with increasing colony size, while the per capita amount of food decreases. When food was available ad libitum and in close proximity to the nest, numerous workers fed directly at the food source. This dramatically increased the rate and the extent of food distribution to both the workers and the queens and colony size had no significant effect on the spread of the marker in the workers or the queens. The rate and the extent of food distribution at the colony level may depend on a number of factors including the number of successful foragers, the size and density of the recipient colony, and the recipient caste.  相似文献   

4.
Summary Deterioration in foraging conditions discourages foraging relatively more from large than from small colonies.
Résumé Une détérioration des conditions de butinage décourage relativement plus le butinage chez les fortes colonies que chez les petites.
  相似文献   

5.
Mating success in the western harvester ant, Pogonomyrmex occidentalis, increases with male size. We tested the hypothesis that increased mating success increases male fitness and the fitness of colonies that make large males by comparing the sperm content of males prior to and at the conclusion of the mating swarm. The number of sperm a male initially possesses is a function of male size, and large males transfer a greater proportion of their sperm than do small males. For colonies, the payoff per unit of investment is an increasing function of male size, and investment in large males is not equivalent to investing in a larger number of small males. Allocation ratios in species that show size variation in reproductives may need to be modified by the individual fitness functions.  相似文献   

6.
Behavioral plasticity in social insects is intriguing because colonies adjust to environmental change through the aggregated responses of individuals. Without central control, colonies adjust numbers of workers allocated to various tasks. Individual decisions are based on local information from the environment and other workers. This study examines how colonies of the seed-eating ant Pogonomyrmex barbatus adjust the intensity of foraging in an arid environment where conspecific neighbors compete for foraging area. The main question is how foragers decide whether to leave the nest. Patrollers search the area before foragers emerge. Removal experiments show that the return of the patrollers stimulates the onset of foraging, and later, the rate at which foragers return affects the rate at which foragers continue to leave the nest. Foraging activity is less sensitive to changes in the rate of returning foragers than to changes in the rate of returning patrollers. These results suggest that whether a colony forages at all on a given day depends on conditions detected early by patrollers but that once foraging begins, the intensity of foraging does not track, on an hourly timescale, how quickly foragers can find food.  相似文献   

7.
The dominant paradigm to explain asymmetries in the spatialdistribution of foraging animals is that they track the spatialheterogeneity of their environment. However, in social insects,endogenous spatial asymmetries can emerge within a uniformenvironment as an outcome from the self-organizing processof trail recruitment. We studied how self-organized asymmetries contribute to the exploitation of different food sources (carbohydrateor proteins) in colonies of the aphid-tending ant Lasius nigervarying in their nutritional needs (presence or absence ofbrood). Colonies with brood fed on sucrose sources exhibita higher mobilization of foragers than the other experimentalgroups. Foraging patterns differ greatly according to food type: colonies strongly focus their activity on only one dropletof sucrose, whereas they show a rather homogeneous distributionof foragers between proteinaceous sources. In addition, thepresence of brood in the colony enhances the asymmetry of collectiveforaging for both types of food. These spatial differencesin self-organized foraging patterns allow efficient exploitationof natural resources and play a role in the competitive strategy of this widespread palearctic ant.  相似文献   

8.
William E. Kunin 《Oecologia》1994,98(3-4):328-335
Harvester ants are important seed predators in many xeric environments, and their foraging choices can influence the composition of plant communities. Seed abundance has been cited as an important factor in determining such foraging preferences. Three seed types (sesame, millet, and flax) were experimentally introduced in differing proportions near nests of the ant Messor ebeninus near the Dead Sea, in territory administered by the state of Israel. Two experiments were designed to investigate the effects of this density conditioning on two stages of the ants' subsequent foraging behavior: recruitment to seed patches and selection of seeds from within a patch. When seeds were presented in small, single-species patches, experimentally common seeds were discovered and exploited significantly faster than rare seeds, especially among less preferred seed types. When seeds were presented in large, mixed patches, however, no consistent effect of density was observed.  相似文献   

9.
Multiple mating by females characterizes most insect species, but is relatively uncommon in social insects. Females may mate with multiple mates because they experience the direct benefits of increased survival or fecundity, to acquire high quality mates, or to lower the risk of reduced fecundity by mating with incompatible males. We used the extensive natural variation in mating frequency in the western harvester ant, Pogonomyrmex occidentalis , to test the hypothesis that increased mating by the queen leads to an increase in colony performance. Colonies with greater genetic diversity began to forage earlier in the day and foraged for longer time periods. The workers which initiated foraging were a nonrandom subset of the genotypes present in the colony. We used a statistical approach to correctly predict the direction and magnitude of the correlation between genetic diversity and colony foraging activity.  相似文献   

10.
11.
1. This study investigates how the density and size of conspecific neighbours affected the mortality of established colonies. Data were from a population of 250–300 colonies of the red harvester ant [ Pogonomyrmex barbatus (F. Smith)], on a 10-ha site, from 1988 to 1995.
2. Colonies are more likely to die as they grow older.
3. Small neighbours tend to lower the probability of dying.
4. The probability of dying varied significantly from year to year.
5. There was little effect of crowding on mortality.
6. There appeared to be no spatial effects, on the scale of 25. m, on the probability of dying.
7. Previous work shows effects of density on the founding of new colonies and on the reproductive output of established ones. The results presented here indicate that competition with neighbours rarely causes the death of established colonies.  相似文献   

12.
Summary Understanding the foraging behavior of an animal is critically dependent upon knowledge of the constraints on that animal. In this study, I tested whether fidelity to foraging direction acts as a behavioral constraint to foraging western harvester ants, Pogonomyrmex occidentalis. Individual P. occidentalis foragers showed strong fidelity to foraging route and direction. Directional fidelity in this population was not related to trunk trail use, food specialization, colony activity levels, or mortality risks. Directional fidelity constrained individual foraging decisions; when colonies were offered seeds of different quality in 2 directions, individuals did not switch directions to obtain the energetically more rewarding seeds. Colony-level recruitment was increased for energetically more profitable seeds, indicating that colonial responses may compensate for the constraints of directional fidelity on individual foragers.  相似文献   

13.
Summary Intraspecific interference competition in the harvester ant,Messor aciculatus, was studied. Colonies of this species were found not to have territories. Some nests were located very close to each other, and the foraging areas of the neighbors usually overlapped. Even though the frequency with which alien and resident ants met was very high in the vicinity of the nest entrances, aggressive interactions between them rarely occurred. However, when hostile workers encountered each other, they exhibited a kind of ritualized combat and the winner ejected, but did not injure the loser. If any aliens entered the nest, some of them were pulled out, mainly by the residents.Aliens roaming near a neighbor's nest entrance ferociously attacked the residents carrying seeds in their mandibles and robbed them. On other occasions, aliens entered the nest and stole the collected seed. Although seed robbing and stealing occurred among neighboring colonies, there were remarkable differences in the frequency of their occurrence. The results of field observations and experiments suggest the existence of a dominance order among the neighbors. In one instance, extermination of an inferior colony by its neighbor was observed. The raider colony transferred the stored seeds from the nest of the inferior colony to its own and deposited the larvae and workers some distance away from the nest.The influence of ritualized combat and food robbing on colony activities, and the ecological significance of this interference behavior in terms of spatial distribution and temporal persistence of the nest sites, is discussed.  相似文献   

14.
1. The vertical distribution in the nest of chambers, workers, callow workers, brood and seeds was studied in the harvester ant, Pogonomyrmex badius, in northern Florida. On each of four sample dates (May, July, October, January), six to seven colonies, chosen to represent the full range of sizes, were excavated. All chamber contents were collected and counted. Chambers were mapped and measured. In a preliminary study, two nests were excavated after preventing vertical migration by driving barriers into the wall of a pit next to the nest, severing the vertical tunnels. The vertical distribution of these barrier-nests differed little from unrestrained nests, indicating that unrestrained excavation produced a reasonable picture of vertical distributions. 2. Nest depth, chamber number and total area increased with colony size. Chamber area declined sharply with depth, as did chamber number, such that more than half of the total area was found in the upper quarter of the nest. 3. The proportion of dark-coloured (older) workers also declined strongly with depth, but this decline was weaker in the spring, and depended to a modest degree on colony size. Conversely, in the distribution of callow (young) workers, the proportion increased towards the bottom of the nest. Mean worker age was inversely related to the depth at which workers were found. The proportion of the brood also increased towards the bottom of the nest, with worker brood, sexual brood, pupae and larvae all being distributed similarly. 4. By contrast, seeds were stored at a preferred absolute depth between 40 and 100 cm. Colonies shallower than 100 cm stored seeds in their deepest chambers. Larger colonies stored most seeds in the upper third of the nest, but patterns were somewhat erratic because chambers were either filled completely with seeds or were empty. 5. Because chamber area decreased sharply with depth, the densities (individuals cm–2) of all colony members, including dark workers, were lowest near the surface and highest in the deepest parts of the nest. Here, worker densities ranged from 2 to 8 cm–2, and brood from 2 to 25 cm–2. 6. The regularity of the patterns of distribution suggests that harvester ant colonies have considerable spatial and temporal structure, which serves or is the outcome of important colony processes. A simple mechanism that could generate several of these patterns is discussed. New workers produced deep in the nest move upwards as they age. As they leave the brood zone they change from brood care to general nest duties, including increased nest excavation, leading to the top-heavy pattern of nest area. As they appear at the surface, they change to guarding and foraging. Thus, age polyethism may be partly the result of this upward migration of workers.  相似文献   

15.
K. Holder  G. A. Polis 《Oecologia》1987,72(3):440-448
Summary Certain predictions of optimal- and central place-foraging theory were tested on the desert harvester ant, Pogonomyrmex californicus. Colonies were offered three different sizes of oat seed and found to maximize net energy intake (ei) over time (t i ) by harvesting the seed sizes with the highest e i /t i rank. Two aspects of t i were measured that were assumed constant in previous studies. The handling components of t i (time required to manipulate the seed and travel time back to the colony with the food) were measured and found to be positively correlated with seed size. The manipulation success rate (the percentage of handled seeds successfully picked up) decreased with increased seed size. These results point out how important it is to measure all parameters of e i /t i rather than to assume constancy with both prey type and foraging distance. The relative abundance of less preferred food types was important in determining the proportion of preferred types in the diet. The food supply of eight colonies was manipulated experimentally over a 25-day period. Four deprived colonies were constrained within aluminum enclosures to prevented foraging. The remaining four satiated colonies were given food ad libitum. The niche breadths of the treated colonies were then compared to controls, but found not to differ significantly. Seed baits were offered at three distances from the colony to test whether selectivity increased with disance. Contrary to theoretical predictions, all colonies harcested about the same proportion of each seed size at each distance.  相似文献   

16.
Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.  相似文献   

17.
Food acquisition by ant colonies is a complex process that starts with acquiring food at the source (i.e., foraging) and culminates with food exchange in or around the nest (i.e., feeding). While ant foraging behavior is relatively well understood, the process of food distribution has received little attention, largely because of the lack of methodology that allows for accurate monitoring of food flow. In this study, we used the odorous house ant, Tapinoma sessile (Say) to investigate the effect of foraging arena size and structural complexity on the rate and the extent of spread of liquid carbohydrate food (sucrose solution) throughout a colony. To track the movement of food, we used protein marking and double-antibody sandwich enzyme-linked immunosorbent assay, DAS-ELISA. Variation in arena size, in conjunction with different colony sizes, allowed us to test the effect of different worker densities on food distribution. Results demonstrate that both arena size and colony size have a significant effect on the spread of the food and the number of workers receiving food decreased as arena size and colony size increased. When colony size was kept constant and arena size increased, the percentage of workers testing positive for the marker decreased, most likely because of fewer trophallactic interactions resulting from lower worker density. When arena size was kept constant and colony size increased, the percentage of workers testing positive decreased. Nonrandom (clustered) worker dispersion and a limited supply of food may have contributed to this result. Overall, results suggest that food distribution is more complete is smaller colonies regardless of the size of the foraging arena and that colony size, rather than worker density, is the primary factor affecting food distribution. The structural complexity of foraging arenas ranged from simple, two-dimensional space (empty arenas) to complex, three-dimensional space (arenas filled with mulch). The structural complexity of foraging arenas had a significant effect on food distribution and the presence of substrate significantly inhibited the spread of food. Structural complexity of foraging arenas and the resulting worker activity patterns might exert considerable influence on socioecological processes in ants and should be considered in laboratory assays.  相似文献   

18.
Clémencet J  Doums C 《Oecologia》2007,152(2):211-218
In social insects, colony size is a crucial life-history trait thought to have major implications for the evolution of social complexity, especially in relation to worker size polymorphism. Yet, little is known about how ecological factors can affect and constrain colony. Here, we explored the pattern of colony-size and worker-size variation in the Mediterranean ant Cataglyphis cursor, in relation to the type of habitats colonized (seaside vs. vineyard). The high level of the water table in the seaside habitat could constrain the depth of C. cursor underground nests and directly constrain its colony size. If worker size increases with colony size, as observed in other ant species, larger colony size and larger workers should be found in the vineyard populations. By comparing worker size among 16 populations, we verified that workers were significantly larger in the vineyard populations. We further determined that the morphological similarities detected among populations from the same habitat type were not due to geographic or genetic proximity. In two populations from each habitat type, the depth of nests was positively correlated with colony size and colony size with worker size. Using a type II regression approach, we further showed that the difference between the two populations in the depth of nest was sufficient to explain the difference in colony size, and similarly, variation in colony size was sufficient to explain variation in worker size. Our results suggest that a single proximate ecological factor could lead to significant variation in major life-history parameters.  相似文献   

19.
Queen size mediates queen survival and colony fitness in harvester ants   总被引:2,自引:0,他引:2  
Abstract We examined the effect of queen size on the probability of new colony establishment in the ant Pogonomyrmex occidentalis. Large queens are significantly more likely to survive than small queens through the initial stages of colony founding. These differences in individual fitness correlates have corresponding effects on colony fitness. In species in which individual queens vary in fitness, sexual allocation ratios should incorporate the individual fitness functions.  相似文献   

20.
Summary The effect of workers size frequency distribution on colony development was studied in 12 young colonies ofB. terrestris. By replacing the original workers with workers of determined size, colonies constituting small, large or mixed size nursing workers were created. The nursing workers size frequency distribution did not influence the average size of the newly emerged workers, nor their size frequency distribution. In contrast, the number of emerging workers and number of egg cells constructed by the queen in colonies with large workers were higher than in colonies with small workers. The small number of emerging workers is explained by prolonged duration of larval time in response to sub-optimal feeding in colonies of small workers. The higher number of egg cells constructed by the queens is supposed to be in response to the number of new cocoons available, or to better condition of the brood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号