首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.  相似文献   

2.
Lower leg amputation generally induces asymmetrical weight-bearing, even after rehabilitation treatment is completed. This is detrimental to the amputees’ long term quality of life. In particular, increasing strains on joint surfaces that receive additional weight load causes back and leg pain, premature wear and tear and arthritis. This pilot study was designed to determine whether subjects with lower leg amputation experience postural post-effects after muscle contraction, a phenomenon already observed in healthy subjects, and whether this could improve the weight-bearing on their prosthesis.Fifteen subjects with a unilateral lower leg amputation and 17 control subjects volunteered to participate in this study. Centre of pressure (CP) position was recorded during standing posture, under eyes closed and open conditions. Recordings were carried out before the subjects performed a 30-s voluntary isometric lateral neck muscle contraction, and again 1 and 4 min after the contraction.Postural post-effects characterized by CP shift, occurred in the medio-lateral plane in the majority of the amputated (7/15 eyes closed, 9/15 eyes open) and control (9/17 eyes closed, 11/17 eyes open) subjects after the contraction. Half of these subjects had a CP shift towards the side of the contraction and the other half towards the opposite side. In four amputated subjects tested 3 months apart, shift direction remained constant. These postural changes occurred without increase in CP velocity.Thus, a 30-s voluntary isometric contraction can change the standing posture of persons with lower leg amputation. The post-effects might result from the adaptation of the postural frame of reference to the proprioceptive messages associated with the isometric contraction.  相似文献   

3.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

4.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

5.
The effects of 20 days horizontal bed rest (BR) on postural reflex were studied by measuring fluctuation of center of gravity in the body during two legs or one leg upright standing in 10 young volunteers. The fluctuation was decided as total moving distance of the center recorded during 60sec standing on a force plate. The stability was measured by the moved area. After BR, the moving distance increased during two legs standing with open eyes (p<0.05), but statistically unchanged with closed eyes. The moving area decreased during right one-leg standing with closed eyes (p<0.05), but unchanged during left one-leg standing. Despite with open eyes the increased distance suggested that postural reflexes to maintain upright position were probably decreased by increased unsuitable feedback informations from the visual receptor deconditioning during BR. The decreased area during right one-leg standing with closed eyes also suggested that the declined standing posture reflex was probably related to more rapidly lowered functions for maintaining standing position in the dominating leg than in the other.  相似文献   

6.
Although the identification and characterization of limb load asymmetries during quiet standing has not received much research attention, they may greatly extend our understanding of the upright stance stability control. It seems that the limb load asymmetry factor may serve as a veridical measure of postural stability and thus it can be used for early diagnostic of the age-related decline in balance control. The effects of ageing and of vision on limb load asymmetry (LLA) during quiet stance were studied in 43 healthy subjects (22 elderly, mean age 72.3+/-4.0 yr, and 21 young, mean age 23.9+/-4.8 yr). Postural sway and body weight distribution were recorded while the subject was standing on two adjacent force platforms during two 120 s trials: one trial was performed with the eyes open (EO), while the other trial was with the eyes closed (EC). The results indicate that LLA was greater in the old adults when compared with the young control subjects. The LLA values were correlated with the postural sway magnitudes especially in the anteroposterior direction. Eyes closure which destabilized posture resulted in a significant increase of body weight distribution asymmetry in the elderly but not in the young persons. The limb load difference between EO and EC conditions showed a significantly greater effect of vision on LLA in the elderly compared to the young subjects. The observed differences in the LLA may be attributed to the decline of postural stability control in the elderly. Ageing results in the progressive decline of postural control and usually the nervous system requires more time to complete a balance recovery action. To compensate for such a deficiency, different compensatory strategies are developed. One of them, as evidenced in our study, is preparatory limb unload strategy (a stance asymmetry strategy) which could significantly shorten reaction time in balance recovery.  相似文献   

7.
The purpose of this study was to evaluate the sensitivity of 16 parameters derived from acceleration to detect changes caused by age and visual conditions during quiet standing and detect and minimise possible sources of unwanted variability that could affect accelerometer measures on the trunk. Twenty-seven healthy subjects, including 16 elderly (age, 69.3 ± 3.6 years) and 11 young (age, 23.6 ± 2.2 years) subjects, were evaluated. The parameters evaluated include root-mean-square values, fractal dimensions, path length, range, frequency dispersion and power spectrum among others derived from these values. These 16 parameters evaluated for each axis of movement and/or derivations resulted in 59 sub-parameters. These 59 sub-parameters were analysed in the elderly and young groups and under the open-eye and closed-eye conditions. The results showed that 30 sub-parameters detected differences for an age effect with open eyes, 18 detected differences with closed eyes, 25 detected differences for the young group standing with closed–open eyes and 37 detected differences for the elderly with closed and open eyes (p < 0.01). We used simple signal processing for the accelerometry signals to minimise the effects of unwanted variability that could affect the results. The results showed better performance compared with those results published previously using force platforms to evaluate postural sway. The results presented here should be useful for researchers who want to use accelerometry to evaluate steady postural balance.  相似文献   

8.
Sensory information about body sway is used to drive corrective muscle action to keep the body's centre of mass located over the base of support provided by the feet. Loss of vision, by closing the eyes, usually results in increased sway as indexed by fluctuations (i.e. standard deviation, s.d.) in the velocity of a marker at C7 on the neck, s.d. dC7. Variability in the rate of change of centre of pressure (s.d. dCoP), which indexes corrective muscle action, also increases during upright standing with eyes closed. Light touch contact by the tip of one finger with an environmental surface can reduce s.d. dC7 and s.d. dCoP as effectively as opening the eyes. We review studies of light touch and balance and then describe a novel paradigm for studying the nature of somatosensory information contributing to effects of light touch balance. We show that 'light tight touch' contact by the index finger held in the thimble of a haptic device results in increased anteroposterior (AP) sway with entraining by either simple or complex AP sinusoidal oscillations of the haptic device. Moreover, sway is also increased when the haptic device plays back the pre-recorded AP sway path of another person. Cross-correlations between hand and C7 motion reveal a 176 ms lead for the hand and we conclude that light tight touch affords an efficient route for somatosensory feedback support for balance. Furthermore, we suggest that the paradigm has potential to contribute to the understanding of interpersonal postural coordination with light touch in future research.  相似文献   

9.
Characteristic features of upright posture maintenance and mechanisms of postural disorders in poststroke hemiparetic patients were studied using a bilateral force platform. The following features of postural disorders were revealed in the patients tested: an increase in the velocity and amplitude of the center-of-pressure (CP) sway as compared to in healthy subjects, an absolute decrease in the half-cycles of the CP sway, asymmetry of weight bearing by both feet, and a shift of the center of pressure of an affected foot towards the toe. The disturbance of stability of the vertical posture in such patients is to a greater extent associated with weight-bearing asymmetry. It was shown that the character of the CP sway is mainly determined by a disorder of the sensory motor control, whereas damage to the efferent pathways is responsible for the postural asymmetry. Increase in the muscle tone restricts the sway amplitude. Thus, several forms of postural instability are characteristic of hemiparetic patients. Predominantly sensory, motor, or tonic disorders are responsible for these disturbances of stability.  相似文献   

10.
Postural responses to challenging situations were studied in older adults as they stood on a foam surface. The experiment was designed to assess the relative contributions made by visual and somatosensory information to the correction of postural sway. Twenty-four subjects, aged 56-83, stood for 20 s on a 1) firm or 2) foam surface with 1) the eyes open or 2) the eyes closed. Centre-of-pressure trajectories under the subjects' feet were measured by using a force platform. A repeated-measure two-way MANCOVA (two surfaces vs. two vision conditions) showed a significant main effect for the surface, but not for the vision. No covariate effect for age was found. Anterior-posterior sway increased in the subjects who were merely standing on the foam surface independent of the vision condition. Medial-lateral sway dramatically increased if the subjects stood on the foam surface with their eyes closed, but not if they stood with their eyes open. These results indicate that older adults rely more on visual information to correct mediolateral postural sway. It appears that the deterioration in visual acuity that occurs with aging may increase the risk of sideway falls, particularly in challenging situations, e.g., when standing on irregular or soft surfaces.  相似文献   

11.
Neck proprioceptive input, as elicited by muscle vibration, can produce destabilizing effects on stance and locomotion. Neck muscle fatigue produces destabilizing effects on stance, too. Our aim was to assess whether neck muscle fatigue can also perturb the orientation in space during a walking task. Direction and amplitude of the path covered during stepping in place were measured in 10 blindfolded subjects, who performed five 30-s stepping trials before and after a 5-min period of isometric dorsal neck muscle contraction against a load. Neck muscle electromyogram amplitude and median frequency during the head extensor effort were used to compute a fatigue index. Head and body kinematics were recorded by an optoelectronic system, and stepping cadence was measured by sensorized insoles. Before the contraction period, subjects normally stepped on the spot or drifted forward. After contraction, some subjects reproduced the same behavior, whereas others reduced their forward progression or even stepped backward. The former subjects showed minimal signs of fatigue and the latter ones marked signs of fatigue, as quantified by the dorsal neck electromyogram index. Head position and cadence were unaffected in either group of subjects. We argue that the abnormal fatigue-induced afferent input originating in the receptors transducing the neck muscle metabolic state can modulate the egocentric spatial reference frame. Notably, the effects of neck muscle fatigue on orientation are opposite to those produced by neck proprioception. The neck represents a complex source of inputs capable of modifying our orientation in space during a locomotor task.  相似文献   

12.
We examined the effects of a load's mass and position on body sway during standing with a load on the back. Three healthy male subjects participated in this experiment. The subjects supported loads of 23kg, 33kg, and 43kg on their backs using a carrier frame. They were asked to stand for 75s on a force platform with their eyes open while being as quiet as possible. Time series data of center-of-pressure (COP) were collected at a sampling rate of 50Hz during the last 60s of the 75s standing period. The COP was measured under three conditions in terms of the load position on the frame: lower (close to the hip), middle, and upper (close to the shoulder). All subjects showed that the lower the position of the load, the more anteriorly the mean COP coordinate was located in the anteroposterior (AP) direction, and the smaller the total distance of the COP trajectories became. Regarding carrying the heavier loads, each subject showed a specific tendency in the mean AP coordinate. The three subjects had different physical characteristics in terms of body height and experience at carrying heavy loads. These results suggest that the examintion of the COP in a static posture can help our understanding of individual information on the posture supporting loads and the general positioning of the body.  相似文献   

13.
ObjectivesTo compare neck, trunk, and lower extremity muscle activity in standing in persons with neck pain (NP) to healthy controls and determine associations with postural sway.MethodsParticipants included 25 persons with NP and 25 controls. Surface electromyography was recorded bilaterally from neck (sternocleidomastoid, SCM; splenius capitis, SC; upper trapezius, UT), trunk (erector spinae, ES), and lower extremity (rectus femoris, RF; biceps femoris, BF; tibialis anterior, TA; medial gastrocnemius, GN) muscles. Postural sway was measured using a force platform in narrow stance with eyes open/closed, on firm/soft surfaces.ResultsCompared to controls, the NP group demonstrated higher activity in all muscles, except UT and had higher amplitude ratios for neck muscles (SCM, SC) for all tasks (p < .05). No between-group difference was found in amplitude ratios for lower extremity muscles, except for GN. Lower extremity activity was moderately correlated with larger postural sway for both groups (r = 0.41–0.66, p < .05). There were no correlations between sway and neck and trunk muscle activity (p > .05).ConclusionIncreased muscle activity with NP is associated with increased postural sway. Both groups used similar postural control strategies, but the increased neck activity in the NP group is likely related to the NP disorder rather than postural instability.  相似文献   

14.
The purpose of this study was to evaluate the sensitivity of 16 parameters derived from acceleration to detect changes caused by age and visual conditions during quiet standing and detect and minimise possible sources of unwanted variability that could affect accelerometer measures on the trunk. Twenty-seven healthy subjects, including 16 elderly (age, 69.3 ± 3.6 years) and 11 young (age, 23.6 ± 2.2 years) subjects, were evaluated. The parameters evaluated include root-mean-square values, fractal dimensions, path length, range, frequency dispersion and power spectrum among others derived from these values. These 16 parameters evaluated for each axis of movement and/or derivations resulted in 59 sub-parameters. These 59 sub-parameters were analysed in the elderly and young groups and under the open-eye and closed-eye conditions. The results showed that 30 sub-parameters detected differences for an age effect with open eyes, 18 detected differences with closed eyes, 25 detected differences for the young group standing with closed-open eyes and 37 detected differences for the elderly with closed and open eyes (p < 0.01). We used simple signal processing for the accelerometry signals to minimise the effects of unwanted variability that could affect the results. The results showed better performance compared with those results published previously using force platforms to evaluate postural sway. The results presented here should be useful for researchers who want to use accelerometry to evaluate steady postural balance.  相似文献   

15.

Introduction

Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies.

Methods

Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index.

Results

Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged.

Discussion

Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed).  相似文献   

16.
This study aimed to examine gender differences in 4 body-sway factors of the center of foot pressure (CFP) during a static upright posture and the influence of alcohol intake on them. Four body-sway factors were interpreted in previous studies using factor analysis (the principal factor method and oblique solution by promax-rotation) on 220 healthy young males and females as follows; unit time sway, front-back sway, left-right sway and high frequency band power. The CFP measurement for 1 min was carried out twice with 1 min rest. The measurements of blood pressure, heart rate, whole body reaction time, standing on one leg with eyes closed, and CFP were carried out before and after the alcohol intake using 11 healthy young males and females. The measurement device used was an Anima's stabilometer G5500. The data sampling frequency was 20 Hz. Reliability of 4 body-sway factors was very high. Significant gender differences were found in the left-right sway and the high frequency band power factors, but the influence on body-sway is, as a whole, can be disregarded. These four sway factors can determine the influence of alcohol intake as efficient as 32 sway parameters.  相似文献   

17.
Maintenance of human upright stance requires the acquisition and integration of sensory inputs. Conventional measures of sway have had success in identifying age- and some disease-related changes, but remain unable to address the complexities and dynamics associated with postural control. We investigated the effects of vision, surface compliance, age, and gender on the spectral content of center of pressure (COP) time series. Sixteen healthy young (age 18-24) and older participants (age 55-65) performed trials of quiet, upright stance under different vision (eyes open vs. closed) and surface (hard vs. compliant) conditions. Spectral analyses were conducted to describe COP mean normalized power in discretized bands. Effects of the two sensory modalities and age were distinct in the antero-posterior and medio-lateral directions, and a reorganization of spectral content was evident with increasing task difficulty (eyes open vs. closed and hard vs. compliant surface) and among older adults. These results indicate that vision and surface compliance are predominantly associated with responses from musculature associated with antero-posterior and medio-lateral directions of sway, respectively. Finally, distinguishing between the contributions of different afferent systems to the postural control system using the spectral content of sway bi-directionally may help in diagnosing individuals with balance impairments.  相似文献   

18.
We investigated the relationships between the ability to maintain balance in an upright stance and center-of-pressure (COP) dynamic properties in young adults. Included in this study were 10 healthy male subjects in each of two groups with respect to balance ability. Balance ability was evaluated according to the length of time a subject stood on one leg with his eyes closed. The means and ranges of this one-leg balancing time were 17.9 s (3-43 s) and 118.3 s (103-120 s) for the off-balance and balance groups, respectively. The time-varying displacements of the COP under a subject's feet during quiet two-leg (normal) standing were measured by an instrumented force platform. Each subject was tested in both the eyes-open and eyes-closed conditions. The COP trajectories were analyzed as fractional Brownian motions according to the procedure of 'stabilogram-diffusion analysis', proposed by Collins and De Luca (1993). The extracted parameters were the effective diffusion coefficients (D) for the short-term (less than about 1.0 s) and long-term intervals, respectively, as well as the Hurst exponents (H) for the short-term and long-term intervals, and some critical-point coordinates (i.e., critical mean square displacements and critical time intervals). The off-balance group showed significantly higher values for short-term D, short-term H, and critical mean square displacements than the balance group. No significant differences between the groups were found in the long-term D and H or in the critical time intervals. That is, for the off-balance subjects, an increase in the stochastic activity and positively correlated (persistent) behavior of the postural sway during shorter timescales may cause postural instability. These results suggest that the difference in balance ability for young adults is related to the open-loop (i.e., short-term) control mechanisms but not to the corrective feedback (i.e., long-term) mechanisms used to maintain balance in an upright stance.  相似文献   

19.
The purpose of this study was to investigate the influence of gender and somatotypes on single-leg upright standing postural stability in children. A total of 709 healthy children from different schools were recruited to measure the anthropometric somatotypes and the mean radius of center of pressure (COP) on a force platform with their eyes open and eyes closed. The results were that (a) girls revealed significantly smaller mean radius of COP distribution than boys, both in the eyes open and eyes closed conditions, and (b) the mesomorphic, muscular children had significantly smaller mean radius of COP distribution than the endomorphic, fatty children and the ectomorphic, linear children during the eyes closed condition. The explanation for gender differences might be due to the larger body weight in boys. The explanation for somatotype differences might be due to the significantly lower body height and higher portion of muscular profile in the mesomorphic children.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号