首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PT Williams 《PloS one》2012,7(8):e41906

Purpose

The guideline physical activity levels are prescribed in terms of time, frequency, and intensity (e.g., 30 minutes brisk walking, five days a week or its energy equivalence) and assume that different activities may be combined to meet targeted goals (exchangeability premise). Habitual runners and walkers may quantify exercise in terms of distance (km/day), and for them, the relationship between activity dose and health benefits may be better assessed in terms of distance rather than time. Analyses were therefore performed to test: 1) whether time-based or distance-based estimates of energy expenditure provide the best metric for relating running and walking to hypertensive, high cholesterol, and diabetes medication use (conditions known to be diminished by exercise), and 2) the exchangeability premise.

Methods

Logistic regression analyses of medication use (dependent variable) vs. metabolic equivalent hours per day (METhr/d) of running, walking and other exercise (independent variables) using cross-sectional data from the National Runners'' (17,201 male, 16,173 female) and Walkers'' Health Studies (3,434 male, 12,384 female).

Results

Estimated METhr/d of running and walking activity were 38% and 31% greater, respectively, when calculated from self-reported time than distance in men, and 43% and 37% greater in women, respectively. Percent reductions in the odds for hypertension and high cholesterol medication use per METhr/d run or per METhr/d walked were ≥2-fold greater when estimated from reported distance (km/wk) than from time (hr/wk). The per METhr/d odds reduction was significantly greater for the distance- than the time-based estimate for hypertension (runners: P<10−5 for males and P = 0.003 for females; walkers: P = 0.03 for males and P<10−4 for females), high cholesterol medication use in runners (P<10−4 for males and P = 0.02 for females) and male walkers (P = 0.01 for males and P = 0.08 for females) and for diabetes medication use in male runners (P<10−3).

Conclusions

Although causality between greater exercise and lower prevalence of hypertension, high cholesterol and diabetes cannot be inferred from these cross-sectional data, the results do suggest that distance-based estimates of METhr/d run or walked provide superior metrics for epidemiological analyses to their traditional time-based estimates.  相似文献   

2.

Background

To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake.

Methodology/Principal Findings

Nineteen semiprofessional soccer players ingested 630±52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7×30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7±4.7 v 35.8±5.5 cm; P<0.05), mean running speed during the sprint test (25.6±2.1 v 26.3±1.8 km · h−1; P<0.05) and total distance covered at a speed higher than 13 km · h−1 during the game (1205±289 v 1436±326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30±10 v 24±8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1±1.0 v 0.1±0.1 µg · mL−1; P<0.05).

Conclusions/significance

A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball.  相似文献   

3.

Purpose

Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.

Methods

Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.

Results

Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48%were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths / fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps / day; rs = −0.49; 95% CI −0.33, −0.63, P<0.01). There were no systematic differences in physical activity between different genotypes mitochondrial disease.

Conclusions

These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.  相似文献   

4.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

5.
6.

Purpose

Walking is purported to reduce the risk of atrial fibrillation by 48%, whereas jogging is purported to increase its risk by 53%, suggesting a strong anti-arrhythmic benefit of walking over running. The purpose of these analyses is to compare incident self-reported physician-diagnosed cardiac arrhythmia to baseline energy expenditure (metabolic equivalent hours per day, METhr/d) from walking, running and other exercise.

Methods

Proportional hazards analysis of 14,734 walkers and 32,073 runners.

Results

There were 1,060 incident cardiac arrhythmias (412 walkers, 648 runners) during 6.2 years of follow-up. The risk for incident cardiac arrhythmias declined 4.4% per baseline METhr/d walked by the walkers, or running in the runners (P = 0.0001). Specifically, the risk declined 14.2% (hazard ratio: 0.858) for 1.8 to 3.6 METhr/d, 26.5% for 3.6 to 5.4 METhr/d, and 31.7% for ≥5.4 METhr/d, relative to <1.8 METhr/d. The risk reduction per METhr/d was significantly greater for walking than running (P<0.01), but only because walkers were at 34% greater risk than runners who fell below contemporary physical activity guideline recommendations; otherwise the walkers and runners had similar risks for cardiac arrhythmias. Cardiac arrhythmias were unrelated to walking and running intensity, and unrelated to marathon participation and performance.

Conclusions

The risk for cardiac arrhythmias was similar in walkers and runners who expended comparable METhr/d during structured exercise. We found no significant risk increase for self-reported cardiac arrhythmias associated with running distance, exercise intensity, or marathon participation. Rhythm abnormalities were based on self-report, precluding definitive categorization of the nature of the rhythm disturbance. However, even if the runners’ arrhythmias include sinus bradycardia due to running itself, there was no increase in arrhythmias with greater running distance.  相似文献   

7.

Background

Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs).

Objective

We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naïve mice.

Methods

Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers.

Results

Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.8±1.8×104 cells/ml vs. 33±11×104 in control mice) and spleen (dexamethasone: 2.8±1.9×105/spleen vs. 95±22×105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.0±1.5% vs 3.4±1.5%*; AITR+: 0.6±0.4 vs 0.5±0.3%, CD127low: 4.0±1.3 vs 5.0±3.0%* and CTLA4+: 13.8±11.5 vs 15.6±12.5%; * p<0.05).

Conclusion

Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers.  相似文献   

8.

Background

There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV) afterload in pulmonary arterial hypertension (PAH). We used intravascular ultrasound (IVUS) to evaluate the mechanical properties of the elastic pulmonary arteries (PA) in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness.

Method

Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy.

Results

At baseline, PAH subjects demonstrated greater stiffness in all measured indices compared to controls: compliance (1.50±0.11×10–2 mm2/mmHg vs 4.49±0.43×10–2 mm2/mmHg, p<0.0001), distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001), elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001), and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046). Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r2 = 0.82, p<0.0001), and also between mean PAP and distensibility (r2 = 0.79, p = 0.002). Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness.

Conclusion

Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness.  相似文献   

9.
Williams PT 《PloS one》2012,7(2):e31436

Objective

Physical activity has been shown to attenuate the effect of the FTO polymorphism on body weight, and the heritability of body weight in twin and in family studies. The dose-response relationship between activity and the risk for inherited obesity is not well known, particularly for higher doses of vigorous exercise. Such information is needed to best prescribe an exercise dose for obesity prevention in those at risk due to their family history.

Design

We therefore analyzed self-reported usual running distance, body mass index (BMI), waist circumference, and mother''s and father''s adiposity (1 = lean, 2 = normal, 3 = overweight, and 4 = very overweight) from survey data collected on 33,480 male and 14,211 female runners. Age-, education-, and alcohol-adjusted regression analyses were used to estimate the contribution of parental adiposities to the BMI and waist circumferences in runners who ran an average of <3, 3–6, 6–9, ≥9 km/day.

Results

BMI and waist circumferences of runners who ran <3 km/day were significantly related to their parents adiposity (P<10−15 and P<10−11, respectively). These relationships (i.e., kg/m2 or cm per increment in parental adiposity) diminished significantly with increasing running distance for both BMI (inheritance×exercise interaction, males: P<10−10; females: P<10−5) and waist circumference (inheritance×exercise interaction, males: P<10−9; females: P = 0.004). Compared to <3 km/day, the parental contribution to runners who averaged ≥9 km/day was diminished by 48% for male BMI, 58% for female BMI, 55% for male waist circumference, and 58% for female waist circumference. These results could not be attributed to self-selection.

Conclusions

Exceeding the minimum exercise dose currently recommended for general health benefits (energy equivalent to running 2–3 km/day) may substantially diminish the risk for inherited obesity. The results are consistent with other research suggesting the physical activity dose required to prevent unhealthy weight gain is greater than that recommended for other health benefits.  相似文献   

10.

Introduction

Previous studies have suggested an inverse relationship between bone mineral density (BMD) and breast cancer incidence. The primary objective of this study was to assess whether BMD is associated with risk of subsequent breast cancer occurrence in the female population of southern Israel.

Methods

The electronic medical charts of women who underwent BMD at the Soroka Medical Center (SMC) between February 2003 and March 2011 were screened for subsequent breast cancer diagnoses. Women were divided by tertiles of BMD at 3 skeletal sites: lumbar spine (LS, L1–4), total hip (TH) and femoral neck (FN). The incidence of breast cancer was calculated.

Results

Of 15268 women who underwent BMD testing, 86 were subsequently diagnosed with breast cancer. Most women in the study were older than 50 years (94.2% and 92.7%, respectively; p = 0.597). Women who subsequently developed breast cancer had a higher mean body-mass index (BMI) (30.9±5.5 vs. 29.1±5.7 p = 0.004) and the mean BMD Z-score was significantly higher than in those without breast cancer for all 3 skeletal sites (LS: 0.36±1.58 vs. −0.12±1.42, p = 0.002; TH: 0.37±1.08 vs. 0.03±1.02, p = 0.002; FN: 0.04±0.99 vs. −0.18±0.94; p = 0.026). Women in the highest Z-score tertiles at the FN and TH had a higher chance of developing breast cancer compared to the lowest tertile; odds ratio of 2.15, 2.02, respectively (P = 0.004 and 0.01 respectively). No association was found between the BMD Z-score and the stage, histology, grade or survival from breast cancer.

Conclusions

This study provides additional support for an inverse association between BMD and the risk of breast cancer.  相似文献   

11.

Purpose

We aimed to investigate the effect of FIFA 11+ (11+) and HarmoKnee injury preventive warm-up programs on conventional strength ratio (CSR), dynamic control ratio (DCR) and fast/slow speed ratio (FSR) in young male professional soccer players. These ratios are related to the risk of injury to the knee in soccer players.

Methods

Thirty-six players were divided into 3 groups; FIFA 11+, HarmoKnee and control (n = 12 per group). These exercises were performed 3 times per week for 2 months (24 sessions). The CSR, DCR and FSR were measured before and after the intervention.

Results

After training, the CSR and DCR of knee muscles in both groups were found to be lower than the published normal values (0.61, 0.72, and 0.78 during 60°.s−1, 180°.s−1 and 300°.s−1, respectively). The CSR (60°.s−1) increased by 8% and FSR in the quadriceps of the non-dominant leg by 8% in the 11+. Meanwhile, the DCR in the dominant and non-dominant legs were reduced by 40% and 30% respectively in the 11+. The CSR (60°.s−1) in the non-dominant leg showed significant differences between the 11+, HarmoKnee and control groups (p = 0.02). As for the DCR analysis between groups, there were significant differences in the non-dominant leg between both programs with the control group (p = 0.04). For FSR no significant changes were found between groups.

Conclusions

It can be concluded that the 11+ improved CSR and FSR, but the HarmoKnee program did not demonstrate improvement. We suggest adding more training elements to the HarmoKnee program that aimed to enhance hamstring strength (CSR, DCR and FSR). Professional soccer players have higher predisposition of getting knee injuries because hamstring to quadriceps ratio were found to be lower than the average values. It seems that the 11+ have potentials to improve CSR and FSR as well as prevent knee injuries in soccer players.  相似文献   

12.

Background

To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon.

Methodology/Principal Findings

We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage.

Results

Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001).

Conclusions/significance

During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.  相似文献   

13.

Background and Aim

Non-alcoholic fatty liver disease (NAFLD) is a common condition, associated with hepatic insulin resistance and the metabolic syndrome including hyperglycaemia and dyslipidemia. We aimed at studying the potential impact of the NAFLD-associated PNPLA3 rs738409 G-allele on NAFLD-related metabolic traits in hyperglycaemic individuals.

Methods

The rs738409 variant was genotyped in the population-based Inter99 cohort examined by an oral glucose-tolerance test, and a combined study-sample consisting of 192 twins (96 twin pairs) and a sub-set of the Inter99 population (n = 63) examined by a hyperinsulinemic euglycemic clamp (n total = 255). In Inter99, we analyzed associations of rs738409 with components of the WHO-defined metabolic syndrome (n = 5,847) and traits related to metabolic disease (n = 5,663). In the combined study sample we elucidated whether the rs738409 G-allele altered hepatic or peripheral insulin sensitivity. Study populations were divided into individuals with normal glucose-tolerance (NGT) and with impaired glucose regulation (IGR).

Results

The case-control study showed no associations with components of the metabolic syndrome or the metabolic syndrome. Among 1,357 IGR individuals, the rs738409 G-allele associated with decreased fasting serum triglyceride levels (per allele effect(β) = −9.9% [−14.4%;−4.0% (95% CI)], p = 5.1×10−5) and fasting total cholesterol (β = −0.2 mmol/l [−0.3;−0.01 mmol/l(95% CI)], p = 1.5×10−4). Meta-analyses showed no impact on hepatic or peripheral insulin resistance in carriers of the rs738409 G-allele.

Conclusion

Our findings suggest that the G-allele of PNPLA3 rs738409 associates with reduced fasting levels of cholesterol and triglyceride in individuals with IGR.  相似文献   

14.

Background

Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects.

Methods

Ten lean (BMI:23.0±0.7 kg/m2) and ten obese (BMI:33.4±1.4 kg/m2) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded.

Results

CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and −298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (−132.6±42 kcal; p<0.01), compared to OPA.

Conclusions

Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity.  相似文献   

15.

Rationale

Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium).

Objectives

To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample.

Methods

We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/−10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations.

Results

The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV1 or FEV1/FVC traits using a carefully defined significance threshold of 1.3×10−5. The most significant loci associated with FEV1 include SNPs tagging MACROD2 (P = 6.81×10−5), CNTN5 (P = 4.37×10−4), and TRPV4 (P = 1.58×10−3). Among ever-smokers, SERPINA1 showed the most significant association with FEV1 (P = 8.41×10−5), followed by PDE4D (P = 1.22×10−4). The strongest association with FEV1/FVC ratio was observed with ABCC1 (P = 4.38×10−4), and ESR1 (P = 5.42×10−4) among ever-smokers.

Conclusions

Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV1 among smokers in the general population.  相似文献   

16.

Objective

Subjects with Polycystic ovarian syndrome (PCOS) are at increased risk of Type 2 diabetes mellitus (T2DM). The mechanism of this enhanced risk is unclear. Circulating vascular progenitor cells (VPC) are immature bone marrow derived cells capable of differentiating into mature endothelial cells. VPC number/function and central arterial stiffness predict cardio-metabolic disease in at-risk populations.

Design

We studied VPC and arterial stiffness measures in non-obese PCOS subjects as compared to age and body mass index (BMI) matched healthy controls in a cross–sectional study.

Methods

Fourteen subjects with PCOS and 12 controls of similar age, BMI (all <30 kg/m2) and metabolic profile were studied. VPC number and in vitro function were studied by flow cytometry and tube formation assays respectively. Augmentation index (AIx), a measure of central arterial stiffness, and central (aortic) blood pressures (BP) were measured by applanation tonometry.

Results

Subjects with PCOS had a reduced number, mean±SEM, of circulating CD34+133+ VPCs (317.5±51.0 vs. 558.3±101.2, p = 0.03) and impaired in vitro tube formation (completed tube area 1.0±0.06 vs. 1.2±0.05×106 µm2 p = 0.02). PCOS subjects had significantly higher AIx (18.4±1.9% vs. 4.9±2.0%) and this difference remained significant even after adjustments for age, BMI and smoking (p = 0.003) in multivariate analyses. Central systolic and pulse pressure were higher in PCOS subjects but these differences were not statistically significant after adjustment for age. Brachial systolic and pulse pressures were similar. VPC number/function and arterial stiffness or BP measures were not correlated.

Conclusions

Non-obese PCOS is characterized by a reduced VPC number, impaired VPC function and increased central arterial stiffness. These changes in novel vascular risk markers may explain the enhanced risk of T2DM and CVD in PCOS.  相似文献   

17.

Objective

Functional studies show that disruption of endothelial surface layer (ESL) is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL through enzymatic degradation would affect vascular barrier properties in an atherogenic model.

Methods

Eight week old male apolipoprotein E deficient mice on Western-type diet for 10 weeks received continuous active or heat-inactivated hyaluronidase (10 U/hr, i.v.) through an osmotic minipump during 4 weeks. Blood chemistry and anatomic changes in both macrovasculature and kidneys were examined.

Results

Infusion with active hyaluronidase resulted in decreased ESL (0.32±0.22 mL) and plasma volume (1.03±0.18 mL) compared to inactivated hyaluronidase (0.52±0.29 mL and 1.28±0.08 mL, p<0.05 respectively).Active hyaluronidase increased proteinuria compared to inactive hyaluronidase (0.27±0.02 vs. 0.15±0.01 µg/µg protein/creatinin, p<0.05) without changes in glomerular morphology or development of tubulo-interstitial inflammation. Atherosclerotic lesions in the aortic branches showed increased matrix production (collagen, 32±5 vs. 18±3%; glycosaminoglycans, 11±5 vs. 0.1±0.01%, active vs. inactive hyaluronidase, p<0.05).

Conclusion

ESL degradation in apoE deficient mice contributes to reduced increased urinary protein excretion without significant changes in renal morphology. Second, the induction of compositional changes in atherogenic plaques by hyaluronidase point towards increased plaque vulnerability. These findings support further efforts to evaluate whether ESL restoration is a valuable target to prevent (micro) vascular disease progression.  相似文献   

18.

Background and Aims

Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments.

Methods

Long-term respirometry (CO2 production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence.

Key Results

For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8·3 nmol CO2 g−1 s−1 in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27·5 nmol g−1 s−1 in the osmophores) and a slight elevation of osmophore temperature (maximum 2·8 °C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3·8 °C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4·8 nmol g−1 s−1 in H. africana and 10·3 nmol g−1 s−1 in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release.

Conclusions

The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct benefit to beetle pollinators.Key words: Pollination biology, Hydnora, thermogenesis, respiration rate, temperature, flowers, insects  相似文献   

19.

Background

Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish.

Methodology/Principal Findings

Individual zebrafish (n = 10) were able to swim at a critical swimming speed (Ucrit) of 0.548±0.007 m s−1 or 18.0 standard body lengths (BL) s−1. The optimal swimming speed (Uopt) at which energetic efficiency is highest was 0.396±0.019 m s−1 (13.0 BL s−1) corresponding to 72.26±0.29% of Ucrit. The cost of transport at optimal swimming speed (COTopt) was 25.23±4.03 µmol g−1 m−1. A group-wise experiment was conducted with zebrafish (n = 83) swimming at Uopt for 6 h day−1 for 5 days week−1 for 4 weeks vs. zebrafish (n = 84) that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb), insulin-like growth factor 1 receptor a (igf1ra), troponin C (stnnc), slow myosin heavy chain 1 (smyhc1), troponin I2 (tnni2), myosin heavy polypeptide 2 (myhz2) and myostatin (mstnb).

Conclusions/Significance

From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.  相似文献   

20.

Purpose

Carbon monoxide (CO) is an accepted cytoprotective molecule. The extent and mechanisms of protection in neuronal systems have not been well studied. We hypothesized that delivery of CO via a novel releasing molecule (CORM) would impart neuroprotection in vivo against ischemia-reperfusion injury (IRI)-induced apoptosis of retinal ganglion cells (RGC) and in vitro of neuronal SH-SY5Y-cells via activation of soluble guanylate-cyclase (sGC).

Methods

To mimic ischemic respiratory arrest, SH-SY5Y-cells were incubated with rotenone (100 nmol/L, 4 h) ± CORM ALF186 (10–100 µmol/L) or inactivated ALF186 lacking the potential of releasing CO. Apoptosis and reactive oxygen species (ROS) production were analyzed using flow-cytometry (Annexin V, mitochondrial membrane potential, CM-H2DCFDA) and Western blot (Caspase-3). The impact of ALF186± respiratory arrest on cell signaling was assessed by measuring expression of nitric oxide synthase (NOS) and soluble guanylate-cyclase (sGC) and by analyzing cellular cGMP levels. The effect of ALF186 (10 mg/kg iv) on retinal IRI in Sprague-Dawley rats was assessed by measuring densities of fluorogold-labeled RGC after IRI and by analysis of apoptosis-related genes in retinal tissue.

Results

ALF186 but not inactivated ALF186 inhibited rotenone-induced apoptosis (Annexin V positive cells: 25±2% rotenone vs. 14±1% ALF186+rotenone, p<0.001; relative mitochondrial membrane potential: 17±4% rotenone vs. 55±3% ALF186+rotenone, p<0.05). ALF186 increased cellular cGMP levels (33±5 nmol/L vs. 23±3 nmol/L; p<0.05) and sGC expression. sGC-inhibition attenuated ALF186-mediated protection (relative mitochondrial membrane potential: 55±3% ALF186+rotenone vs. 20±1% ODQ+ALF186+rotenone, p<0.05). ALF186 protected RGC in vivo (IRI 1255±327 RGC/mm2 vs. ALF186+IRI 2036±83; p<0.05) while sGC inhibition abolished the protective effects of ALF186 (ALF186+IRI 2036±83 RGC/mm2 vs. NS-2028+ALF186+IRI 1263±170, p<0.05).

Conclusions

The CORM ALF186 inhibits IRI-induced neuronal cell death via activation of sGC and may be a useful treatment option for acute ischemic insults to the retina and the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号