首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B-cell activation mediated through the antigen receptor is dependent on activation of protein tyrosine kinases (PTKs) such as Lyn and Syk and subsequent phosphorylation of various signaling proteins. Here we report on the identification and characterization of the B-cell scaffold protein with ankyrin repeats (BANK), a novel substrate of tyrosine kinases. BANK is expressed in B cells and is tyrosine phosphorylated upon B-cell antigen receptor (BCR) stimulation, which is mediated predominantly by Syk. Overexpres sion of BANK in B cells leads to enhancement of BCR-induced calcium mobilization. We found that both Lyn and inositol 1,4,5-trisphosphate receptor (IP(3)R) associate with the distinct regions of BANK and that BANK promotes Lyn-mediated tyrosine phosphorylation of IP(3)R. Given that IP(3)R channel activity is up-regulated by its tyrosine phosphorylation, BANK appears to be a novel scaffold protein regulating BCR-induced calcium mobilization by connecting PTKs to IP(3)R. Because BANK expression is confined to functional BCR-expressing B cells, BANK-mediated calcium mobilization may be specific to foreign antigen-induced immune responses rather than to signaling required for B-cell development.  相似文献   

2.
3.
4.
B-cell fate during maturation and the germinal center reaction is regulated through the strength and the duration of the B-cell receptor signal. Signaling pathways discriminating between apoptosis and survival in B cells are keys in understanding adaptive immunity. Gab2 is a member of the Gab/Dos adaptor protein family. It has been shown in several model systems that Gab/Dos family members may regulate both the anti-apoptotic PI3-K/Akt and the mitogenic Ras/MAPK pathways, still their role in B-cells have not been investigated in detail. Here we studied the role of Gab2 in B-cell receptor mediated signaling. We have shown that BCR crosslinking induces the marked phosphorylation of Gab2 through both Lyn and Syk kinases. Subsequently Gab2 recruits p85 regulatory subunit of PI3-K, and SHP-2. Our results revealed that Ig-alpha/Ig-beta, signal transducing unit of the B-cell receptor, may function as scaffold recruiting Gab2 to the signalosome. Overexpression of Gab2 in A20 cells demonstrated that Gab2 is a regulator of the PI3-K/Akt but not that of the Ras/MAPK pathway in B cells. Accordingly to the elevated Akt phosphorylation, overexpression of wild-type Gab2 in A20 cells suppressed Fas-mediated apoptosis, and enhanced BCR-mediated rescue from Fas-induced cell death. Although PH-domain has only a stabilizing effect on membrane recruitment of Gab2, it is indispensable in mediating its anti-apoptotic effect.  相似文献   

5.
The immune system involves the complex interplay between many different cell types. Over the last decade, T cells, dendritic cells (DC) and macrophages have all been implicated as the key regulator cells of the immunological response, linking innate and adaptive immunity. The forgotten cell in this discourse has been the B-cell. Long considered as simple antibody production units dictated to by T-cells, recent years have begun to shift this assumption. The discovery that numerous B-cell subsets exist, with specific regulatory functions capable of modulating T-cell and chronic inflammatory responses has revealed a hitherto unappreciated role of B-cells. In particular, these ideas have been developed in light of the surprisingly successful responses delivered in autoimmune settings following depletion of B-cells with the anti-CD20 antibody rituximab. Here we summarise the history of the humble B-cell and discuss some of the key recent findings that lead us to propose it as an important regulator of ongoing immune responses and as such, one of the masters of the immunoverse.  相似文献   

6.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

7.
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.  相似文献   

8.
Latent membrane protein 2A (LMP2A) is a viral protein expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor signal transduction and provides survival and developmental signals to B cells in vivo. Although Lyn has been shown to be important in mediating LMP2A signaling, it is still unclear if Lyn is used preferentially or if LMP2A associates promiscuously with other Src family kinase (SFK) members. To investigate the role of various SFKs in LMP2A signaling, we crossed LMP2A transgenic mice (TgE) with Lyn−/−, Fyn−/−, or Blk−/− mice. TgE Lyn−/− mice had a larger immunoglobulin M (IgM)-positive B-cell population than TgE mice, suggesting that the absence of Lyn prevents LMP2A from delivering survival and developmental signals to the B cells. Both TgE Fyn−/− and TgE Blk−/− mice have an IgM-negative population of splenic B cells, similar to the TgE mice. LMP2A was also transiently transfected into the human EBV-negative B-cell line BJAB to determine which SFK members associate with LMP2A. Lyn was detected in LMP2A immunoprecipitates, whereas Fyn was not. Both Lyn and Fyn were able to bind to an LMP2A mutant which contained a sequence shown previously to bind tightly to the SH2 domain of multiple SFK members. From these results, we conclude that LMP2A preferentially associates with and signals through Lyn compared to its association with other SFKs. This preferential association is due in part to the SH2 domain of Lyn associating with LMP2A.  相似文献   

9.
Lysophosphatidic acid (LPA) protects epithelial and fibroblast cell lines from apoptosis. In B-cells, LPA acts as a growth factor promoting cell proliferation. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19+/CD5+ B-lymphocytes primarily through a block in apoptosis. The mechanisms underlying this defect are not fully understood. We investigated whether LPA could be a survival factor in CLL cells. Herein, we demonstrate that LPA protects B-cell lines BJAB and I-83 and primary CLL cells but not normal B-cells from fludarabine- and etoposide-induced apoptosis. Furthermore, LPA prevented spontaneous apoptosis in primary CLL cells. The LPA1 expression was found to be increased in primary CLL cells compared with normal B-cells correlating with LPA prevention of apoptosis. Treatment of primary CLL cells with the LPA receptor antagonist, diacylglycerol pyrophosphate, reverses the protective effect of LPA against apoptosis, and down-regulation of the LPA1 by siRNA blocked LPA-mediated protection against spontaneous apoptosis in primary CLL cells. The protective effect of LPA was inhibited by blocking activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. These results indicate that LPA is a survival factor in B-cell lines and primary CLL cells but not normal B-cells. Thus, drugs targeting the LPA receptors might be an effective therapy against B-cell-derived malignancies such as CLL.  相似文献   

10.
B淋巴细胞信号转导相关接头蛋白Bam32与Hic-5的相互作用   总被引:1,自引:0,他引:1  
32kDB淋巴细胞接头分子(Bam32)是调控B细胞抗原受体(Bcellantigenreceptor,BCR)信号转导通路的关键蛋白质分子之一.为了研究Bam32的功能及其作用机理,应用酵母双杂交技术筛选了能与Bam32相互作用的蛋白质分子.筛选发现1个呈强阳性反应的克隆,其基因编码Hic5,为paxillin蛋白家族成员之一.Paxillin是整合素(integrin)信号转导通路中的关键蛋白质分子,而整合素在细胞对细胞外基质分子的粘附、细胞运动等方面起了重要的作用,因此对Bam32与Hic5的相互作用进行了进一步研究.用293T细胞共转染和特异性免疫共沉淀法证实,Bam32可在哺乳动物细胞中与Hic5共沉淀,证明它们可以在细胞内相互作用.应用免疫共沉淀法和抗磷酸化酪氨酸抗体检测显示,激酶Lyn可导致Bam32和Hic5的磷酸化.这些研究结果提示,Bam32与Hic5的相互作用可能在激活下游分子的信号转导级联反应以及调节细胞的粘附和运动等功能中发挥了重要的作用.  相似文献   

11.
Receptor antagonists block all receptor-coupled signaling pathways indiscriminately. We introduce a novel class of peptide inhibitors that is designed to block a specific signal from a receptor while keeping other signals intact. This concept was tested in the model of IL-5 signaling via Lyn kinase. We have previously mapped the Lyn-binding site of the IL-5/GM-CSF receptor common beta (beta c) subunit. In the present study, we designed a peptide inhibitor using the Lyn-binding sequence. The peptide was N-stearated to enable cellular internalization. The stearated peptide blocked the binding of Lyn to the beta c receptor and the activation of Lyn. The lipopeptide did not affect the activation of Janus kinase 2 or its association with beta c. The inhibitor blocked the Lyn-dependent functions of IL-5 in vitro (e.g., eosinophil differentiation from stem cells and eosinophil survival). It did not affect eosinophil degranulation. When applied in vivo, the Lyn-binding peptide significantly inhibited airway eosinophil influx in a mouse model of asthma. The lipopeptide had no effect on basophil histamine release or on the proliferation of B cells and T cells. To our knowledge, this is the first report on an inhibitor of IL-5 that blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. This novel strategy to develop peptide inhibitors can be applied to other receptors.  相似文献   

12.
The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is implicated in the maintenance of viral latency and appears to function in part by inhibiting B-cell receptor (BCR) signaling. The N-terminal cytoplasmic region of LMP2A has multiple tyrosine residues that upon phosphorylation bind the SH2 domains of the Syk tyrosine kinase and the Src family kinase Lyn. The LMP2A N-terminal region also has two conserved PPPPY motifs. Here we show that the PPPPY motifs of LMP2A bind multiple WW domains of E3 protein-ubiquitin ligases of the Nedd4 family, including AIP4 and KIAA0439, and demonstrate that AIP4 and KIAA0439 form physiological complexes with LMP2A in EBV-positive B cells. In addition to a C2 domain and four WW domains, these proteins have a C-terminal Hect catalytic domain implicated in the ubiquitination of target proteins. LMP2A enhances Lyn and Syk ubiquitination in vivo in a fashion that depends on the activity of Nedd4 family members and correlates with destabilization of the Lyn tyrosine kinase. These results suggest that LMP2A serves as a molecular scaffold to recruit both B-cell tyrosine kinases and C2/WW/Hect domain E3 protein-ubiquitin ligases. This may promote Lyn and Syk ubiquitination in a fashion that contributes to a block in B-cell signaling. LMP2A may potentiate a normal mechanism by which Nedd4 family E3 enzymes regulate B-cell signaling.  相似文献   

13.
An expression cloning approach was employed to identify the receptor for B-lymphocyte stimulator (BLyS) and identified the tumor necrosis factor receptor superfamily member TACI as a BLyS-binding protein. Expression of TACI in HEK293T cells confers on the cells the ability to bind BLyS with subnanomolar affinity. Furthermore, a TACI-Fc fusion protein recognizes both the cleaved, soluble form of BLyS as well as the membrane BLyS present on the cell surface of a recombinant cell line. TACI mRNA is found predominantly in B-cells and correlates with BLyS binding in a panel of B-cell lines. We also demonstrate that TACI interacts with nanomolar affinity with the BLyS-related tumor necrosis factor homologue APRIL for which no clear in vivo role has been described. BLyS and APRIL are capable of signaling through TACI to mediate NF-kappaB responses in HEK293 cells. We conclude that TACI is a receptor for BLyS and APRIL and discuss the implications for B-cell biology.  相似文献   

14.
Globotriaosyl ceramide or CD77 functions as a cell surface receptor for toxins of the Shiga toxin/verotoxin family and as a marker for germinal center stage B-cells. The B-cell protein CD19 and the interferon-alpha receptor possess verotoxin-like amino acid sequences in their extracellular domains, and CD77 has been shown to function in CD19-mediated adhesion and interferon-induced growth inhibition. The Burkitt's lymphoma cell line, Daudi, is similar to germinal center B-cells in their expression of CD77, CD19 and MHC class II molecules. Using the multiple sequence alignment program, ClustalW, we have identified a verotoxin-like amino acid sequence on the beta-chain of human and murine MHC class II molecules. Binding of CD77 at this site could modulate the peptide-binding properties of these MHC class II molecules. Using Western blot analysis of whole cell extracts, we found that CD77-positive Daudi cells have higher levels of HLA-D proteins than VT500 cells, a Daudi-derived CD77-deficient mutant cell line. In contrast, MHC class II-mediated adhesion and surface expression are similar in the two cell lines. Therefore, CD77 could play a functional or regulatory role in MHC class II-mediated functions specifically relating to antigen presentation by B-cells to T helper cells.  相似文献   

15.
The cell surface glycoprotein CD19 and the Src-related protein tyrosine kinase Lyn are key mediators of, respectively, positive and negative signaling in B cells. Despite the apparent opposition of their regulatory functions, a recent model of the biochemical events after B cell receptor (BCR) ligation intimately links the activation of Lyn and CD19. We examined the biochemical consequences of BCR ligation in mouse B cells lacking either Lyn or CD19 for evidence of interaction or codependence. In contrast to published results, we found CD19 phosphorylation after BCR ligation to be unaffected by the absence of Lyn, yet dependent on Src family protein tyrosine kinases as it was inhibited fully by PP2, an Src family-specific inhibitor. Consistent with normal CD19 phosphorylation in lyn(-/-) B cells, the recruitment of phosphoinositide-3 kinase to CD19 and the ability of CD19 to enhance both intracellular calcium flux and extracellular signal-regulated kinase 1/2 activation after coligation with the BCRs were intact in the absence of Lyn. Similarly, unique functions of Lyn were found to be independent of CD19. CD19(-/-) B cells were normal for increased Lyn kinase activity after BCR ligation, inhibition of BCR-mediated calcium flux after CD22 coligation, and inhibition of extracellular signal-regulated kinase phosporylation after FcgammaRIIB coligation. Collectively, these data show that the unique functions of Lyn do not require CD19 and that the signal amplification mediated by CD19 is independent of Lyn. We conclude that the roles of Lyn and CD19 after BCR ligation are independent and opposing, one being primarily inhibitory and the other stimulatory.  相似文献   

16.
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.  相似文献   

17.
To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.  相似文献   

18.
19.
20.
The E3 ubiquitin ligase Cbl has been implicated in intracellular signaling pathways induced by the engagement of the B cell antigen receptor (BCR) as a negative regulator. Here we showed that Cbl deficiency results in a reduction of B cell proliferation. Cbl-/- B cells show impaired tyrosine phosphorylation, reduced Erk activation, and attenuated calcium mobilization in response to BCR engagement. The phosphorylation of Syk and Btk is also down-modulated. Interestingly, Cbl-/- B cells display enhanced BCR-induced phosphorylation of CD19 and its association with phosphatidylinositol 3-kinase. Importantly, Lyn kinase activity is up-regulated in Cbl-/- B cells, which correlates inversely with the Cbl-mediated ubiquitination of Lyn. Because Lyn has both negative and positive roles in B cells, our results suggested that Cbl differentially modulates the BCR-mediated signaling pathways through targeting Lyn ubiquitination, which affects B cell development and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号