首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Estrogen-related receptor (ERR)α regulates genes involved in fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) in muscle. The soy isoflavone daidzein was reported to be a putative ERRα activator, but little is known about its effects on gene expression and FA metabolism. This study aimed to clarify whether daidzein affects FAO- and OXPHOS-related genes thereby modulating intracellular FA metabolism in muscle cells. For this purpose, we used the C2C12 murine muscle cell line. ERRα-expressing C2C12 myotubes were treated with 50 μM daidzein, and gene expression was examined. The expression of FAO genes such as pyruvate dehydrogenase kinase 4 (Pdk4) and acyl-coenzyme A dehydrogenase (Acadm) and that of OXPHOS genes such as ATP synthase F1 subunit beta (Atp5b) and cytochrome c (Cycs) was significantly increased by daidzein, and these effects were partially blocked by an ERRα inhibitor. Using a reporter assay, we showed that daidzein enhanced the promoter activity of these genes and that ERRα responsive elements in the promoter region were necessary for the action of daidzein. Finally, daidzein significantly decreased lipid accumulation in C2C12 myotubes associated with increased oxygen consumption. In conclusion, daidzein decreases lipid deposition in muscle cells by regulating the expression of genes related to FAO and OXPHOS via an ERRα-associated pathway at least in part. These results suggest that daidzein would be a beneficial tool to protect against various diseases caused by muscle lipotoxicity.  相似文献   

3.
Chronic hepatitis B (CHB) is associated with the development of hepatocellular carcinoma (HCC). Decoy receptor 3 (DcR3) is a tumor necrosis factor receptor that promotes tumor cell survival by inhibiting apoptosis and interfering with immune surveillance. Previous studies showed that DcR3 was overexpressed in HCC cells and that short hairpin RNA (shDcR3) sensitizes TRAIL-resistant HCC cells. However, the expression of DcR3 during hepatitis B virus (HBV) infection has not been investigated. Here, we demonstrated that DcR3 was overexpressed in CHB patients and that DcR3 upregulation was positively correlated with the HBV DNA load and liver injury (determined by histological activity index, serum alanine aminotransferase level, and aspartate aminotransferase level). We found that hepatitis B virus X protein (HBx) upregulated DcR3 expression in a dose-dependent manner, but this increase was blocked by NF-κB inhibitors. HBx also induced the activation of NF-κB, and the NF-κB subunits p65 and p50 upregulated DcR3 by directly binding to the DcR3 promoters. Inhibition of PI3K significantly downregulated DcR3 and inhibited the binding of NF-κB to the DcR3 promoters. Our results demonstrate that the HBx induced DcR3 expression via the PI3K/NF-κB pathway; this process may contribute to the development of HBV-mediated HCC.  相似文献   

4.
Membrane trafficking involves large fluxes of cargo and membrane across separate compartments. These fluxes must be regulated by control systems to maintain homoeostasis. While control systems for other key functions such as protein folding or the cell cycle are well known, the mechanisms that control secretory transport are poorly understood. We have previously described a signalling circuit operating at the Golgi complex that regulates intra-Golgi trafficking and is initiated by the KDEL receptor (KDEL-R), a protein previously known to mediate protein recycling from the Golgi to the endoplasmic reticulum (ER). Here, we investigated the KDEL-R signalling mechanism. We show that the KDEL-R is predicted to fold like a G-protein-coupled receptor (GPCR), and that it binds and activates the heterotrimeric signalling G-protein Gα(q/11) which, in turn, regulates transport through the Golgi complex. These findings reveal an unexpected GPCR-like mode of action of the KDEL-R and shed light on a core molecular control mechanism of intra-Golgi traffic.  相似文献   

5.
Previous studies have shown that the intracellular domains of opioid receptors serve as platforms for the formation of a multi-component signaling complex consisting of various interacting partners (Leontiadis et al., 2009, Cell Signal. 21, 1218-1228; Georganta et al., 2010, Neuropharmacology, 59(3), 139-148). In the present study we demonstrate that spinophilin a dendritic-spine enriched scaffold protein associates with δ- and μ-opioid receptors (δ-ΟR, μ-OR) constitutively in HEK293 an interaction that is altered upon agonist administration and enhanced upon forskolin treatment for both μ-OR and δ-ΟR. Spinophilin association with the opioid receptors is mediated via the third intracellular loop and a conserved region of the C-terminal tails. The portion of spinophilin responsible for interaction with the δ-OR and μ-OR is narrowed to a region encompassing amino acids 151-444. Spinophilin, RGS4, Gα and Gβγ subunits of G proteins form a multi-protein complex using specific regions of spinophilin and a conserved amino acid stretch of the C-terminal tails of both δ-μ-ORs. Expression of spinophilin in HEK293 cells potentiated DPDPE-mediated adenylyl-cyclase inhibition of δ-OR leaving unaffected the levels of cAMP accumulation mediated by the μ-OR. Moreover, measurements of extracellular signal regulated kinase (ERK1,2) phosphorylation indicated that the presence of spinophilin attenuated agonist-driven ERK1,2 phosphorylation mediated upon activation of the δ-OR but not the μ-OR. Collectively, these findings suggest that spinophilin associates with both δ- and μ-ΟR and G protein subunits in HEK293 cells participating in a multimeric signaling complex that displays a differential regulatory role in opioid receptor signaling.  相似文献   

6.
Journal of Physiology and Biochemistry - Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (activated HSCs), which produce...  相似文献   

7.
8.
As ligands of the sugar gustatory receptors, sugars have been known to activate the insulin/insulin-like growth factor signaling pathway; however, the precise pathways that are activated by the sugar-bound gustatory receptors in insects remain unclear. In this study, we aimed to investigate the signaling cascades activated by NlGr11, a sugar gustatory receptor in the brown planthopper Nilaparvata lugens (Stål), and its ligand. Galactose-bound NlGr11 (galactose-NlGr11) activated the -phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascade via insulin receptor (InR) and Gβγ in vitro. In addition, galactose-NlGr11 inhibited the adenosine monophosphate-activated protein kinase (AMPK) phosphorylation by activating the AKT-phosphofructokinase (PFK)-ATP signaling cascade in vitro. Importantly, the InR-PI3K-AKT-PFK-AKT signaling cascade was activated and the AMPK phosphorylation was inhibited after feeding the brown planthoppers with galactose solution. Collectively, these findings confirm that NlGr11 can inhibit AMPK phosphorylation by activating the PI3K-AKT-PFK-ATP signaling cascades via both InR and Gβγ when bound to galactose. Thus, our study provides novel insights into the signaling pathways regulated by the sugar gustatory receptors in insects.  相似文献   

9.
Histone deacetylase inhibitors (HDACIs) have shown promising anti-tumor effects for a variety of malignancies, however, many tumors are reportedly resistant to them. In this study, we made a novel discovery that co-administration of HDACIs (Trichostatin A (TSA) and others) and exogenous cell-permeable short-chain ceramide (C6) results in striking increase in cancer cell death and apoptosis in multiple cancer cells. These events are associated with perturbations in diverse cell signaling pathways, including inactivation of Akt/mTOR and increase in α-tubulin acetylation (both in vivo and in vitro). TSA interacts in a highly synergistic manner with C6-ceramide to disrupt HDAC6/protein phosphatase 1 (PP1)/tubulin complex, to induce α-tubulin hyperacetylation, and to release and activate PP1, which then leads to AKT dephosphorylation and eventually causes cancer cell death. Interestingly, TSA itself results in short-term ceramide accumulation, which as a result of metabolic (glycosylation) removal, does not result in evident increase of cancer cell death. However, adding C6-ceramide led to a very pronounced increase in ceramide level and marked increase in cell death. Importantly, the effective synergistic anti-tumor activity of TSA plus C6-ceramide is also seen in in vivo mice xenograft pancreatic and ovarian cancer models, indicating that this regimen (HDACI plus C6-ceramide) may represent a more effective form of therapy against pancreatic and ovarian carcinoma.  相似文献   

10.
11.
12.
Estrogen signaling is considered to play an important role in spermatogenesis, spermiogenesis and male fertility. Estrogens can act via the two nuclear estrogen receptors ESR1 (ERα) and ESR2 (ERβ) or via the intracellular G-protein-coupled estrogen receptor 1 (GPER, formerly GPR30). Several reports on the localization and expression of all three receptors in the human testis have been published but are controversial particularly in case of ERα. Contrary to previous studies, we decided therefore to evaluate expression of all three receptors in the testis by a number of different methods and in comparison with MCF-7 cells. Using qPCR, we could show that mRNA expression of ERα is considerably lower and expression of ERβ and GPER much higher in the testis than in MCF-7 cells. RT-PCR after laser-assisted microdissection of tubular and interstitial compartments from normal and Sertoli cell only syndrome testes plus in situ hybridization and immunohistochemical analyses of the same samples demonstrated that there is very low expression of ERα in germ cells and in single interstitial cells, very high expression of ERβ in germ cells and Sertoli cells and high expression of GPER in interstitial cells and less in Sertoli cells.  相似文献   

13.
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3−/− mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3+/+ cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3−/− epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3−/− cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.  相似文献   

14.
Bone is a dynamic tissue that is constantly remodelled by bone resorbing osteoclasts and bone forming osteoblasts, respectively. A breakdown in the remodelling process underlies several bone diseases such as osteoporosis. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on bone health. However, the mechanism of action of UFAs in bone remains unclear. Free fatty acid receptor 4 (FFAR4) is expressed in bone cells and preferentially binds ω−3 and ω−7 UFAs. Therefore, we sought to determine if FFAR4 influenced the action of different classes of UFAs in bone cells. FFAR4 and potential signalling pathways, β-arrestin 2 (βarr2) and Gαq, were silenced in RAW264.7 murine macrophages (pre-osteoclasts) and MC3T3-E1 murine pre-osteoblasts. Cell differentiation, activation of signalling pathways and expression of regulatory genes were evaluated. The ω−3 UFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and the ω−7 UFA, palmitoleic acid (PLA), were shown to require the FFAR4/βarr2 signalling pathway to inhibit osteoclast differentiation in RAW264.7 murine macrophages. The ω−6 UFA, arachidonic acid, and the ω−9 UFA, oleic acid (OA), were shown to inhibit osteoclast formation but did not use FFAR4. DHA, EPA, PLA and OA enhanced osteoblast signalling through the FFAR4/βarr2 signalling axis. This study reveals that FFAR4/βarr2 signalling may mediate the bone protective effects of different classes of UFAs in osteoclasts and osteoblasts.  相似文献   

15.
16.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

17.
18.
The present study was carried out to observe the protective effects of αB-crystallin protein on hydrogen peroxide (H2O2)-induced injury in rat myocardial cells (H9c2) and to investigate the mechanisms of these protective effects at the cellular level, which could provide the experimental basis for future applications of αB-crystallin in the treatment of cardiovascular disease. Western blotting was used to measure the expression of αB-crystallin in cultured H9c2 cells in vitro. A αB-crystallin recombinant expression vector, pcDNA3.1-Cryab, was constructed to transfect H9c2 cells for the establishment of cells that stably expressed αB-crystallin. A tetrazolium-based colorimetric assay (MTT test) was used to measure changes in the viability of the H9c2 cells at 1, 2, 3 and 4 h after induced by 150 μM H2O2 to establish a model of H2O2 injury to cells. H2O2 was applied to H9c2 cells that were stably transfected with αB-crystallin, and the effect of αB-crystallin overexpression on the viability of myocardial cells subjected to H2O2-induced injury was measured by the MTT assay. The effect of αB-crystallin overexpression on the H2O2-induced injury of H9c2 cells was also analyzed by flow cytometry. The mitochondrial components and cytoplasmic components of H9c2 cells were separated, and western blotting was used to measure the effect of αB-crystallin overexpression on the release of cytochrome c from the mitochondria. Western blotting was also used to measure the effect of αB-crystallin overexpression on the expression of the anti-apoptosis protein Bcl-2 and components of the phosphatidylinositol 3-OH kinase (PI3K)/AKT pathway. The αB-crystallin recombinant expression vector pcDNA3.1-Cryab successfully transfected H9c2 cells, and H9c2 cells that were stably transfected with αB-crystallin were established after G418 selection. The measurements carried out by western blotting showed that αB-crystallin proteins are expressed in normal H9c2 cells, but the proteins’ expression was much higher in pcDNA3.1-Cryab transfected cells (P < 0.01). The MTT assays showed that 4 h of H2O2 treatment induced significant injury in H9c2 cells (P < 0.01), but αB-crystallin overexpression can effectively antagonize the H2O2-induced injury to H9c2 cells (P < 0.05). The results of flow cytometry analysis showed that αB-crystallin overexpression can significantly reduce apoptosis in H2O2-injured H9c2 cells (P < 0.05). The results of western blotting showed that αB-crystallin overexpression in myocardial cells can reduce the H2O2-induced release of cytochrome c from the mitochondria (P < 0.05), antagonize the H2O2-induced downregulation of Bcl-2 (P < 0.05) and magnify the decrease in phosphorylated AKT levels induced by H2O2 injury (P < 0.05). The overexpression of αB-crystallin has a protective effect on H2O2-injured H9c2 cells, and αB-crystallin can play a protective role by reducing apoptosis, reducing the release of cytochrome c from the mitochondria and antagonizing the downregulation of Bcl-2 expression. The protective effects of αB-crystallin may be related to the PI3K/AKT pathway.  相似文献   

19.
20.
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical Gβγ effector G protein-activated K+ channel (GIRK; Kir3) physically interacts with Gβγ but also with Gαi/o. Whether and how Gαi/o subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, Gαi3 and Gβγ. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that Gβγ and Gαi3 distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that Gβγ greatly enhances the binding of GIRK1 subunit to Gαi3GDP and, unexpectedly, to Gαi3GTP. i-FRET showed that both Gαi3 and Gβγ induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a “constitutively active” Gαi3 mutant and Gβγ together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either Gαi3 or Gβγ. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-Gα-Gβγ signaling complex and mediates allosteric interactions between GαiGTP and Gβγ. Our findings imply that Gαi/o and the Gαiβγ heterotrimer can regulate a Gβγ effector both before and after activation by neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号