首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.  相似文献   

2.
Dynamic protein-protein interactions are involved in most physiological processes and, in particular, for the formation of multiprotein signaling complexes at transmembrane receptors, adapter proteins and effector molecules. Because the unregulated induction of signaling complexes has substantial clinical relevance, the investigation of these complexes is an active area of research. These studies strive to answer questions about the composition and function of multiprotein signaling complexes, along with the molecular mechanisms of their formation. In this review, the adapter protein, linker for activation of T cells (LAT), will be employed as a model to exemplify how signaling complexes are characterized using a range of techniques. The intensive investigation of LAT highlights how the systematic use of complementary techniques leads to an integrated understanding of the formation, composition and function of multiprotein signaling complexes that occur at receptors, adapter proteins and effector molecules.  相似文献   

3.
Transmembrane adaptor molecule LAT (linker for activation of T cells) forms a central scaffold for signaling protein complexes that accumulate in the vicinity of activated T cell antigen receptors (TCR). Here we used biochemical analysis of immunoisolated plasma membrane domains and fluorescence imaging of green fluorescence protein-tagged signaling proteins to investigate the contributions of different tyrosine-based signaling protein docking sites of LAT to the formation of LAT signaling protein assemblies in TCR membrane domains. We found that the phospholipase C gamma docking site of LAT and different Grb2/Gads docking sites function in an interdependent fashion and synergize to accumulate LAT, Grb2, and phospholipase C gamma in TCR signaling assemblies. Two-dimensional gels showed that Grb2 is a predominant cytoplasmic adaptor in the isolated LAT signaling complexes, whereas Gads, Crk-1, and Grap are present in lower amounts. Taken together our data suggest a synergistic assembly of multimolecular TCR.LAT signal transduction complexes in T cell plasma membrane domains.  相似文献   

4.
Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.  相似文献   

5.
It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.  相似文献   

6.
The primary activating receptor for T cells is the T cell receptor (TCR), which is stimulated upon binding to an antigen/MHC complex. TCR activation results in the induction of regulated signaling pathways vital for T cell differentiation, cellular adhesion and cytokine release. A critical TCR-induced signaling protein is the adaptor protein LAT. Upon TCR stimulation, LAT is phosphorylated on conserved tyrosines, which facilitates the formation of multiprotein complexes needed for propagation of signaling pathways. Although the role of the conserved tyrosines in LAT-mediated signaling has been investigated, few studies have examined the role of larger regions of LAT in TCR-induced pathways. In this study, a sequence alignment of 97 mammalian LAT proteins was used to identify several “functional” domains on LAT. Using LAT mutants expressed in Jurkat E6.1 cells, we observed that the membrane proximal, proline-rich region of LAT and the correct order of domains containing conserved tyrosines are necessary for optimal TCR-mediated early signaling, cytokine production, and cellular adhesion. Together, these data show that LAT contains distinct regions whose presence and correct order are required for the propagation of TCR-mediated signaling pathways.  相似文献   

7.
The generation of multiprotein complexes at receptors and adapter proteins is crucial for the activation of intracellular signaling pathways. In this study, we used multiple biochemical and biophysical methods to examine the binding properties of several SH2 and SH3 domain-containing signaling proteins as they interact with the adapter protein linker for activation of T-cells (LAT) to form multiprotein complexes. We observed that the binding specificity of these proteins for various LAT tyrosines appears to be constrained both by the affinity of binding and by cooperative protein-protein interactions. These studies provide quantitative information on how different binding parameters can determine in vivo binding site specificity observed for multiprotein signaling complexes.  相似文献   

8.
The linker for activation of T cells (LAT) and the non-T cell activation linker (NTAL) are two transmembrane adapters which organize IgE receptor (FcepsilonRI) signaling complexes in mast cells. LAT positively regulates, whereas NTAL negatively regulates mast cell activation. We previously found that the four distal tyrosines of LAT can generate negative signals. We show here that two of these tyrosines provide two binding sites for SHIP1, that LAT recruits SHIP1 in vivo, and that SHIP1 recruitment is enhanced in NTAL-deficient cells. We show that NTAL negatively regulates mast cell activation by decreasing the recruitment, by LAT, of molecules involved in FcepsilonRI-dependent positive signaling. We show that NTAL also decreases the recruitment of SHIP1 by LAT, leading to an increased phosphorylation of the antiapoptotic molecule Akt, and positively regulates mast cell survival. We finally show that the positive effect of NTAL on Akt phosphorylation and mast cell survival requires LAT. Our data thus document the mechanisms by which LAT and NTAL can generate both positive and negative signals which differentially regulate mast cell activation and survival. They also provide molecular bases for the recruitment of SHIP1 in FcepsilonRI signaling complexes. SHIP1 is a major negative regulator of mast cell activation and, hence, of allergic reactions.  相似文献   

9.
Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein-GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70-containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.  相似文献   

10.
LAT (linker for activation of T cells) is a transmembrane adaptor protein that plays an essential role in TCR-mediated signaling and thymocyte development. Because LAT-deficient mice have an early block in thymocyte development, we utilized an inducible system to delete LAT in primary T cells to study LAT function in T cell activation, homeostasis, and survival. Deletion of LAT caused primary T cells to become unresponsive to stimulation from the TCR and impaired T cell homeostatic proliferation and long term survival. Furthermore, deletion of LAT led to reduced expression of Foxp3, CTLA-4, and CD25 in Treg cells and impaired their function. Consequently, mice with LAT deleted developed a lymphoproliferative syndrome similar to that in LATY136F mice, although less severe. Our data implicate that LAT has positive and negative roles in the regulation of mature T cells.  相似文献   

11.
The transmembrane protein, linker for activation of T cells (LAT), is essential for T-cell activation and development. Phosphorylation of LAT at multiple tyrosines creates binding sites for the adaptors Gads and Grb2, leading to nucleation of multiprotein signaling complexes. Human LAT contains five potential binding sites for Gads, of which only those at Tyr171 and Tyr191 appear necessary for T-cell function. We asked whether Gads binds preferentially to these sites, as differential recognition could assist in assembling defined LAT-based complexes. Measured calorimetrically, Gads-SH2 binds LAT tyrosine phosphorylation sites 171 and 191 with higher affinities than the other sites, with the differences ranging from only several fold weaker binding to no detectable interaction. Crystal structures of Gads-SH2 complexed with phosphopeptides representing sites 171, 191 and 226 were determined to 1.8-1.9 A resolutions. The structures reveal the basis for preferential recognition of specific LAT sites by Gads, as well as for the relatively greater promiscuity of the related adaptor Grb2, whose binding also requires asparagine at position +2 C-terminal to the phosphorylated tyrosine.  相似文献   

12.
T-cell antigen receptor engagement causes the rapid assembly of signaling complexes. The adapter protein SLP-76, detected as SLP-yellow fluorescent protein, initially clustered with the TCR and other proteins, then translocated medially on microtubules. As shown by total internal reflection fluorescence microscopy and the inhibition of SLP-76 movement at 16 degrees C, this movement required endocytosis. Immunoelectron microscopy showed SLP-76 staining of smooth pits and tubules. Cholesterol depletion decreased the movement of SLP-76 clusters, as did coexpression of the ubiquitin-interacting motif domain from eps15. These data are consistent with the internalization of SLP-76 via a lipid raft-dependent pathway that requires interaction of the endocytic machinery with ubiquitinylated proteins. The endocytosed SLP-76 clusters contained phosphorylated SLP-76 and phosphorylated LAT. The raft-associated, transmembrane protein LAT likely targets SLP-76 to endocytic vesicles. The endocytosis of active SLP-76 and LAT complexes suggests a possible mechanism for downregulation of signaling complexes induced by TCR activation.  相似文献   

13.
c-Cbl-mediated regulation of LAT-nucleated signaling complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The engagement of the T-cell receptor (TCR) causes the rapid recruitment of multiple signaling molecules into clusters with the TCR. Upon receptor activation, the adapters LAT and SLP-76, visualized as chimeric proteins tagged with yellow fluorescent protein, transiently associate with and then rapidly dissociate from the TCR. Previously, we demonstrated that after recruitment into signaling clusters, SLP-76 is endocytosed in vesicles via a lipid raft-dependent pathway that requires the interaction of the endocytic machinery with ubiquitylated proteins. In this study, we focus on LAT and demonstrate that signaling clusters containing this adapter are internalized into distinct intracellular compartments and dissipate rapidly upon TCR activation. The internalization of LAT was inhibited in cells expressing versions of the ubiquitin ligase c-Cbl mutated in the RING domain and in T cells from mice lacking c-Cbl. Moreover, c-Cbl RING mutant forms suppressed LAT ubiquitylation and caused an increase in cellular LAT levels, as well as basal and TCR-induced levels of phosphorylated LAT. Collectively, these data indicate that following the rapid formation of signaling complexes upon TCR stimulation, c-Cbl activity is involved in the internalization and possible downregulation of a subset of activated signaling molecules.  相似文献   

14.
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.  相似文献   

15.
Ntal/Lab/Lat2     
Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), now officially termed LAT2 (linker for activation of T cells 2) is a 25-30kDa transmembrane adaptor protein (TRAP) associated with glycolipid-enriched membrane fractions (GEMs; lipid rafts) in specific cell types of hematopoietic lineage. Tyrosine phosphorylation of NTAL/LAB/LAT2 is induced by FcvarepsilonRI aggregation and Kit dimerization in mast cells, FcgammaRI aggregation in monocytes, and BCR aggregation in B cells. NTAL/LAB/LAT2 is also expressed in resting NK cells but, unlike the related TRAP, LAT, not in resting T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative regulator of mast cell activation, its precise role in the activation of these and other hematopoietic cells remains enigmatic.  相似文献   

16.
17.
The adapter molecules SLP-76 and LAT play central roles in T cell activation by recruiting enzymes and other adapters into multiprotein complexes that coordinate highly regulated signal transduction pathways. While many of the associated proteins have been characterized, less is known concerning the mechanisms of assembly for these dynamic and potentially heterogeneous signaling complexes. Following T cell receptor (TCR) stimulation, SLP-76 is found in structures called microclusters, which contain many signaling complexes. Previous studies showed that a mutation to the SLP-76 C-terminal SH2 domain nearly abolished SLP-76 microclusters, suggesting that the SH2 domain facilitates incorporation of signaling complexes into microclusters. S. C. Bunnell, A. L. Singer, D. I. Hong, B. H. Jacque, M. S. Jordan, M. C. Seminario, V. A. Barr, G. A. Koretzky, and L. E. Samelson, Mol. Cell. Biol., 26:7155–7166, 2006). Using biophysical methods, we demonstrate that the adapter, ADAP, contains three binding sites for SLP-76, and that multipoint binding to ADAP fragments oligomerizes the SLP-76 SH2 domain in vitro. These results were complemented with confocal imaging and functional studies of cells expressing ADAP with various mutations. Our results demonstrate that all three binding sites are critical for SLP-76 microcluster assembly, but any combination of two sites will partially induce microclusters. These data support a model whereby multipoint binding of SLP-76 to ADAP facilitates the assembly of SLP-76 microclusters. This model has implications for the regulation of SLP-76 and LAT microclusters and, as a result, T cell signaling.  相似文献   

18.
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.  相似文献   

19.
The linker for activation of T cells (LAT), the linker for activation of B cells (LAB), and the linker for activation of X cells (LAX) form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1:1 and 2:1 complexes with the guanine nucleotide exchange factor SOS1. The 2:1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate). We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.  相似文献   

20.
Adapter molecules in a variety of signal transduction systems link receptors to a limited number of commonly used downstream signaling pathways. During T-cell development and mature T-cell effector function, a multichain receptor (the pre-T-cell antigen receptor or the T-cell antigen receptor) activates several protein tyrosine kinases. Receptor and kinase activation is linked to distal signaling pathways (PLC-gamma1 activation, Ca2+ influx, PKC activation and Ras/Erk activation) via the adapter protein LAT (Linker for Activation of T cells). Structure/function studies of LAT including expression of selected LAT point mutations in vivo reveals that these multiple pathways are integrated at the level of the LAT adapter. These studies suggest that similar levels of control may be found in other systems where adapter molecules are known to have important functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号