首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
With the growth of genetic engineering, mice have become common as models of human diseases, which in turn has stimulated the development of techniques to monitor and image the murine cardiovascular system. Invasive methods are often more quantitative, but noninvasive methods are preferred when measurements must be repeated serially on living animals during development or in response to pharmacological or surgical interventions. Because of the small size and high heart rates in mice, high spatial and temporal resolutions are required to preserve signal fidelity. Monitoring of body temperature and the electrocardiogram is essential when animals must be anesthetized for a measurement or other procedure. Several other groups have developed cardiovascular imaging modalities suitable for murine applications, and ultrasound is the most widely used. Our group has developed and applied high-resolution Doppler probes and signal processing for measuring blood velocity in the heart and peripheral vessels of anesthetized mice noninvasively. We can measure cardiac filling and ejection velocities as indices of systolic and diastolic ventricular function and for timing of cardiac events; velocity pulse arrival times for determining pulse-wave velocity and arterial stiffness; peripheral velocity waveforms as indices of arterial resistance, compliance, and wave reflections; stenotic velocities for estimation of pressure drop and detection of vorticity; and tail artery velocity for determining systolic and diastolic blood pressure using a pressure cuff. These noninvasive methods are convenient and easy to apply and have been used to detect and evaluate numerous cardiovascular phenotypes in mutant mice.  相似文献   

2.
Apolipoprotein E-knockout (ApoE-KO) mice develop advanced atherosclerotic lesions by 1 yr of age and have been well characterized pathologically and morphologically, but little is known regarding their cardiovascular physiology and hemodynamics. We used noninvasive Doppler ultrasound to measure aortic and mitral blood velocity and aortic pulse-wave velocity in 13-mo-old ApoE-KO and wild-type (WT) mice anesthetized with isoflurane. In other mice from the same colony, we measured systolic blood pressure, body weight, heart weight, cholesterol, and hematocrit. Heart rate and blood pressure were comparable (P = not significant) between ApoE-KO and WT mice, but significant decreases (P < 0.001) were found in body weight (-22%) and hematocrit (-11%), and significant increases were found in heart weight (+23%), aortic velocity (+60%), mitral velocity (+81%) (all P < 0.001), and pulse-wave velocity (+13%, P < 0.05). We also found inflections in the aortic arch velocity signal consistent with enhanced peripheral wave reflection. Thus ApoE-KO mice have phenotypic alterations in indexes of peripheral vascular resistance and compliance and significantly elevated cardiac outflow velocities and heart weight-to-body weight ratios.  相似文献   

3.
Cerebral vasospasm (CVS) is a life-threatening condition that occurs in a large proportion of those affected by subarachnoid haemorrhage and stroke. CVS manifests itself as the progressive narrowing of intracranial arteries. It is usually diagnosed using Doppler ultrasound, which quantifies blood velocity changes in the affected vessels, but has low sensitivity when CVS affects the peripheral vasculature. The aim of this study was to identify alternative biomarkers that could be used to diagnose CVS. We used a 1D modelling approach to describe the properties of pulse waves that propagate through the cardiovascular system, which allowed the effects of different types of vasospasm on waveforms to be characterised at several locations within a simulated cerebral network. A sensitivity analysis empowered by the use of a Gaussian process statistical emulator was used to identify waveform features that may have strong correlations with vasospasm. We showed that the minimum rate of velocity change can be much more effective than blood velocity for stratifying typical manifestations of vasospasm and its progression. The results and methodology of this study have the potential not only to improve the diagnosis and monitoring of vasospasm, but also to be used in the diagnosis of many other cardiovascular diseases where cardiovascular waves can be decoded to provide disease characterisation.  相似文献   

4.
The blood flow velocities in left anterior descending coronary artery and ascending aorta have been measured in anesthetized rats by high frequency Doppler technique. The measurement of coronary blood flow velocity by miniature ultrasonic probe (2.0 x 1.5 mm) was performed through myocardial surface. Two different forms of coronary blood flow curves were recorded. These forms of the curves depend on the value of the coronary blood flow velocity and are connected with the ascending aorta blood flow velocity. The dynamics of the coronary blood flow reactions under coronary artery occlusion and asphyxia in the rat is similar to the one in the cat and the dog, but less expressive. In experiments with vasodilators the direct dependence between linear and volume coronary artery velocities under the measurement through myocardial surface was found.  相似文献   

5.
Pulse wave propagation in the mature rabbit systemic circulation was simulated using the one-dimensional equations of blood flow in compliant vessels. A corrosion cast of the rabbit circulation was manufactured to obtain arterial lengths and diameters. Pulse wave speeds and inflow and outflow boundary conditions were derived from in vivo data. Numerical results captured the main features of in vivo pressure and velocity pulse waveforms in the aorta, brachiocephalic artery and central ear artery. This model was used to elucidate haemodynamic mechanisms underlying changes in peripheral pulse waveforms observed in vivo after administering drugs that alter nitric oxide synthesis in the endothelial cells lining blood vessels. According to our model, these changes can be explained by single or combined alterations of blood viscosity, peripheral resistance and compliance, and the elasticity of conduit arteries.  相似文献   

6.

In this paper, we describe a mathematical model of the cardiovascular system in human pregnancy. An automated, closed-loop 1D–0D modelling framework was developed, and we demonstrate its efficacy in (1) reproducing measured multi-variate cardiovascular variables (pulse pressure, total peripheral resistance and cardiac output) and (2) providing automated estimates of variables that have not been measured (uterine arterial and venous blood flow, pulse wave velocity, pulsatility index). This is the first model capable of estimating volumetric blood flow to the uterus via the utero-ovarian communicating arteries. It is also the first model capable of capturing wave propagation phenomena in the utero-ovarian circulation, which are important for the accurate estimation of arterial stiffness in contemporary obstetric practice. The model will provide a basis for future studies aiming to elucidate the physiological mechanisms underlying the dynamic properties (changing shapes) of vascular flow waveforms that are observed with advancing gestation. This in turn will facilitate the development of methods for the earlier detection of pathologies that have an influence on vascular structure and behaviour.

  相似文献   

7.
In this paper, Doppler continuous-wave analysis of blood velocity in the internal mammary artery, anastomosed to the left coronary vascular bed in humans who have undergone myocardial revascularization, is proposed as a non-invasive technique to study coronary blood flow during physiological procedures which cause it to change. Blood velocity curves obtained in normal and anastomosed internal mammary arteries were compared during hyperventilation and the Valsalva manoeuvre. During hyperventilation, blood velocity increased in the normal mammary but not in the anastomosed artery. During the expiratory effort of the Valsalva manoeuvre, the mean blood velocity decreased in the normal mammary artery but it did not change significantly in the anastomosed artery. Variations in the mean velocity were largely prevented by simultaneous and well-balanced increases and decreases in the diastolic and systolic velocities, respectively.  相似文献   

8.
We hypothesized that umbilical artery (UA) absolute blood flow velocities measured by Doppler ultrasonography reflect placental volume blood flow (Q(UA)) and placental vascular resistance (R(UA)) in a late gestation fetal sheep model. In addition, we examined the relationships between umbilical artery absolute blood flow velocities and parameters of fetal cardiac function. Twenty-six sheep fetuses were instrumented at 112-132 days of gestation. After a 5-day recovery period, experiments were performed under general anesthesia in 16 normal fetuses, in 5 fetuses after maternal administration of phenylephrine, and in 5 fetuses after placental embolization. The Q(UA) and arterial blood pressures were measured using a transit-time ultrasonic flow probe and a catheter placed into the descending aorta, respectively. UA peak systolic velocity (PSV), end-diastolic velocity (EDV), time-averaged maximum velocity (TAMXV), pulsatility index (PI), mean velocity (V(mean)), fetal cardiac output, ventricular ejection forces, and the proportion of isovolumetric relaxation time (IRT%) in the cardiac cycle were measured with the use of Doppler ultrasonography. Significant positive linear correlations were found between UA EDV, TAMXV, and V(mean) versus Q(UA), whereas UA PI had a significant negative correlation with Q(UA). Significant negative correlations were shown between UA EDV, TAMXV, and V(mean) versus R(UA). A significant positive correlation was present between UA PI and R(UA). Doppler-derived UA parameters did not correlate with fetal arterial blood pressures, cardiac output, ventricular ejection forces or IRT%. In fetal sheep, Doppler-derived UA PI and absolute velocities, except PSV, are closely related to directly measured Q(UA) and R(UA), validating the use of noninvasive Doppler velocimetry in the assessment of placental circulation.  相似文献   

9.
Reverse flow in the major infrarenal vessels--a capacitive phenomenon   总被引:1,自引:0,他引:1  
R Holenstein  D N Ku 《Biorheology》1988,25(6):835-842
The arterial blood flow waveform is shown to change abruptly when passing from the thoracic aorta into the abdominal aorta in humans. Although this change has been accurately predicted by numerical solution of complicated pulse propagation equations, this paper demonstrates the ability of a simple lumped parameter model to explain this change in the waveforms using easily understood physical terms. The model correctly predicts changes in flow waveform under conditions of exercise and peripheral vascular disease. This analysis is useful in understanding abdominal artery physiology and explains the basis for clinical ultrasound Doppler examination of the legs.  相似文献   

10.
The velocity of blood in a major epicardial coronary vein accompanying the left anterior descending coronary artery of dogs was measured by means of a 140-micron fiber optic probe connected to a laser Doppler velocimeter. Right atrial pressure, left ventricular intramyocardial and cavity pressures, aortic pressure, as well as peripheral and central coronary venous pressures were compared with the velocity of blood measured in the epicardial coronary vein midway between the sites of the catheters measuring proximal and distal coronary vein pressures. During control conditions, coronary vein velocity was 14-18 cm/s during systole and 1.0-2.1 cm/s during diastole. Right stellate ganglion stimulation, norepinephrine or isoproterenol increased diastolic coronary vein velocity significantly, whereas left stellate ganglion stimulation did not. Average peak systolic velocity was not affected by these interventions. During these positive inotropic interventions, the peak coronary vein velocity usually occurred later in the cardiac cycle than during control conditions. Positive inotropic interventions appeared to decrease coronary vein velocity during systole and increase it during diastole. Left vagosympathetic trunk stimulation decreased diastolic but not systolic coronary vein velocity and usually caused peak coronary vein velocity to occur earlier in the cardiac cycle than during control states. Changes induced by vagosympathetic trunk stimulation usually occurred within one cardiac cycle. It is concluded that coronary vein blood velocity can be influenced by the autonomic nervous system.  相似文献   

11.
Mice are used with increasing frequency as models of human cardiovascular diseases, but significant gaps exist in our knowledge of vascular function in the aging mouse. We determined aortic input impedance spectra, pulse wave velocity, and augmentation index in adult (8-mo-old) and old (29-mo-old) mice to determine whether arterial stiffening occurred with age in mice as it does in humans. Pressure and blood velocity signals measured simultaneously from the same location in the ascending aorta were used to determine input impedance spectra (0-10 harmonics). The first minimum of the impedance modulus occurred at the second harmonic in adult mice but shifted to the fourth harmonic in old mice. Characteristic impedance (average of 2nd-10th harmonic) was 57% higher in old mice: 471 +/- 62 vs. 299 +/- 10 (SE) dyn.s.cm-3 (P < 0.05). Pulse pressure and augmentation index, determined from the aortic pressure signals, were also higher in old mice: 42 +/- 2.2 vs. 29 +/- 4.9 mmHg (P < 0.05) and 37 +/- 5 vs. 14 +/- 2% (P < 0.005). Aortic pulse wave velocity measured from the timing of upstrokes of the Doppler velocity signals was 45% higher in old mice: 416 +/- 22 vs. 286 +/- 14 cm/s (n = 3, P < 0.01). These results reproduce age-related findings reported in humans and confirm that mice may be used as models of age-related vascular stiffening.  相似文献   

12.
Superior vena caval blood flow velocity was measured in 30 normal adults (age 20-65, mean 36 yr). The flow velocities were measured by pulsed Doppler echocardiography, using a Duplex system with the transducer at the right supraclavicular fossa, approximating a 0 degrees Doppler angle. Four distinct flow waveforms were found during each cardiac cycle: A, a small retrograde flow during right atrial contraction (peak flow velocity 12.4 +/- 2.2 cm/s); B, a small antegrade flow during right atrial relaxation (15.7 +/- 5.0 cm/s); S, a large antegrade flow during ventricular systole (35.2 +/- 7.3 cm/s); and D, a large antegrade flow during ventricular diastole (23.2 +/- 3.1 cm/s). The wave duration was inversely related to heart rate. The peak flow velocities of the S and D waves were inversely related to the patients' ages. This study provides recognition of the pattern and range of normality essential to extension of this noninvasive technique to the diagnosis of pathological conditions.  相似文献   

13.

Introduction

Serial monitoring of patients participating in clinical trials of carotid artery therapy requires noninvasive precision methods that are inexpensive, safe and widely available. Noninvasive ultrasonic duplex Doppler velocimetry provides a precision method that can be used for recruitment qualification, pre-treatment classification and post treatment surveillance for remodeling and restenosis. The University of Washington Ultrasound Reading Center (UWURC) provides a uniform examination protocol and interpretation of duplex Doppler velocity measurements.

Methods

Doppler waveforms from 6 locations along the common carotid and internal carotid artery path to the brain plus the external carotid and vertebral arteries on each side using a Doppler examination angle of 60 degrees are evaluated. The UWURC verifies all measurements against the images and waveforms for the database, which includes pre-procedure, post-procedure and annual follow-up examinations. Doppler angle alignment errors greater than 3 degrees and Doppler velocity measurement errors greater than 0.05 m/s are corrected.

Results

Angle adjusted Doppler velocity measurements produce higher values when higher Doppler examination angles are used. The definition of peak systolic velocity varies between examiners when spectral broadening due to turbulence is present. Examples of measurements are shown.

Discussion

Although ultrasonic duplex Doppler methods are widely used in carotid artery diagnosis, there is disagreement about how the examinations should be performed and how the results should be validated. In clinical trails, a centralized reading center can unify the methods. Because the goals of research examinations are different from those of clinical examinations, screening and diagnostic clinical examinations may require fewer velocity measurements.  相似文献   

14.
Ultrasonic waves of 1-15 MHz frequencies easily propagate through soft biological tissues, thus providing qualitative and quantitative information on mechanical and flow properties of blood and red blood cell (RBC) suspensions. Two types of techniques allow to investigate blood behaviors: echographic devices via amplitude detection and Doppler effect based devices via frequency detection of the ultrasonic signal. When ever B mode serves to construct images of tissue slabs from the ultrasonic backscattering coefficient and can give qualitative information on the mechanical properties of blood, A-mode allows to quantify the ultrasonic backscattering coefficient. Ultrasonic Doppler modes also provide both qualitative and quantitative information on blood flow velocity: continuous and pulsed Doppler modes provide curves of blood flow versus time when color Doppler and power Doppler imaging visualize blood flowing in human vessels. Association of echographic and Doppler modes to investigate simultaneously structure and velocity of blood is commercially available. Some examples of results given by such ultrasonic techniques that contribute to characterize, both in vitro and in vivo, structure and flow properties of blood or red blood cell (RBC) suspensions are presented.  相似文献   

15.
Renal function, the anatomic and functional status of the vena cava inferior, renal arteries and veins, and spermatic veins were evaluated in healthy individuals and patients with varicocele before and 12 months after laparoscopic ligation of the left spermatic vein. The renal vessels were assessed by color Doppler ultrasonography and renal function was examined by complex radionuclide study with 99mTc-pentatech. There were no significant changes in the diameter of renal arteries and vena cava inferior and the right arterial blood flow velocities in healthy individuals and patients. No difference were found in the diameter of renal veins and in the blood flow velocity in renal arteries and veins. The enlarged renal veins and decreased mean blood flow velocity in the left renal vein in healthy persons and patients with varicocele and lower blood flow in the left renal artery than in the right one indicate left-sided renal hypertension that is attributable to left renal vein overload due to a great variety of collaterals and to compression at the site of "a forcepts". At the same time 12-month postoperative ultrasonic, Doppler and complex radionuclide studies revealed no significant changes in the diameter and blood flow velocity in the left renal vein.  相似文献   

16.
A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.  相似文献   

17.
In this study, we developed and examined the feasibility of a model-based system identification approach to cardiovascular disease diagnosis. The basic premise of the approach is that it may be possible to diagnose cardiovascular disease from disease-induced alterations in the arterial mechanical properties manifested in the proximal and distal arterial blood pressure waveforms. It first individualizes the lumped-parameter model of wave propagation and reflection in the artery using the measurement of proximal and distal arterial blood pressure waveforms. Then, it employs a diagnosis logic, in the form of disease-specific patterns in model parameters, referred as \(\alpha , \beta \) and pulse transit time. The longitudinal change in these parameters is used to diagnose the presence of peripheral artery disease and arterial stiffening. We illustrated the feasibility of the proposed approach by testing it in a full-scale in-silico arterial tree simulation. The results showed that the approach exhibited superior sensitivity to ankle-brachial index and convenience to carotid-femoral pulse wave velocity: The model parameters \(\alpha \) and \(\beta \) responded with up to 100 and 40 % changes to peripheral artery disease with up to 50 % arterial blockage whereas the change in ankle-brachial index was \({<}5\,\%\); the same parameters responded with up to 300 and 40 % changes to up to 100 % arterial stiffening while pulse transit time changed by up to 24 %. Together with the development of more convenient techniques for the measurement of arterial blood pressure waveforms, the proposed approach may evolve into a viable alternative to the state-of-the-art techniques for cardiovascular disease diagnosis.  相似文献   

18.

Purpose

There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV).

Methods

10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity.

Results

As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher.

Conclusion

A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo.  相似文献   

19.
We examined the hypothesis that changes in heart rate at rest influence bioactivity of nitric oxide (NO) in humans by examining forearm blood flow responses during cardiac pacing in six subjects. Peak forearm and mean forearm blood flows across the cardiac cycle were continuously recorded at baseline and during pacing, with the use of high-resolution brachial artery ultrasound and Doppler flow velocity measurement. The brachial artery was cannulated to allow continuous infusion of saline or N(G)-monomethyl-L-arginine (L-NMMA). As heart rate increased, no changes in pulse pressure and mean or peak blood flow were evident. L-NMMA had no effect on brachial artery diameter, velocity, or flows compared with saline infusion. These results contrast with our recent findings that exercise involving the lower body, associated with increases in heart rate and pulse pressure, also increased forearm blood flow, the latter response being diminished by L-NMMA. These data suggest that changes in blood pressure, rather than pulse frequency, may be the stimulus for shear stress-mediated NO release in vivo.  相似文献   

20.
"Therapeutic angiogenesis" describes an emerging field of cardiovascular medicine whereby new blood vessels are induced to grow to supply oxygen and nutrients to ischemic cardiac or skeletal muscle. Various methods of producing therapeutic angiogenesis have been employed, including mechanical means, gene therapy, and the use of growth factors, among others. The use of appropriate large-animal models is essential if these therapies are to be critically evaluated in a preclinical setting before their use in humans, yet little has been written comparing the various available models. Over the past decade, swine have been increasingly used in studies of chronic ischemia because of their numerous similarities to humans, including minimal preexisting coronary collaterals as well as similar coronary anatomy and physiology. Consequently, this review describes the most commonly used swine models of chronic myocardial ischemia with special attention to regional myocardial blood flow and function and critically evaluates the strengths and weaknesses of each model in terms of utility for preclinical trials of angiogenic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号